Measuring size and composition of species pools: a comparison of dark diversity estimates

. 2016 Jun ; 6 (12) : 4088-101. [epub] 20160520

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27516866

Grantová podpora
278065 European Research Council - International

Ecological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods need attention, especially when dark diversity is estimated at the plot level.

Department of Botany and Zoology Masaryk University Kotlářská 2 CZ 611 37 Brno Czech Republic

Department of Botany and Zoology Masaryk University Kotlářská 2 CZ 611 37 Brno Czech Republic; Institute of Ecology and Evolutionary Biology National Taiwan University Roosevelt Rd 110617 Taipei Taiwan

Department of Botany University of South Bohemia Na Zlaté stoce 1 CZ 370 05 České Budějovice Czech Republic; Biology Centre The Czech Academy of Sciences Branišovská 31370 05 České Budějovice Czech Republic

Department of Ecosystem Biology Faculty of Science University of South Bohemia Branišovská 1970 CZ 370 05 České Budějovice Czech Republic

Institute of Botany The Czech Academy of Sciences Dukelská 135 CZ 379 82 Třeboň Czech Republic

Institute of Botany The Czech Academy of Sciences Lidická 25 27 CZ 602 00 Brno Czech Republic; Department of Forest Ecology Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Kamýcká 129 CZ 165 21 Prague 6 Suchdol Czech Republic

Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic

Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic; Department of Ecology Faculty of Science Charles University Prague Viničná 7 CZ 128 44 Prague Czech Republic; Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Matieland 7602 South Africa

Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic; Faculty of Environmental Sciences Czech University of Life Sciences Prague Kamýcká 129 CZ 165 21 Prague 6 Suchdol Czech Republic

Institute of BotanyThe Czech Academy of Sciences Dukelská 135 CZ 379 82 Třeboň Czech Republic; Department of Botany University of South Bohemia Na Zlaté stoce 1 CZ 370 05 České Budějovice Czech Republic

Institute of Ecology and Earth Sciences University of Tartu Lai 40 51005 Tartu Estonia

Zobrazit více v PubMed

Allouche, O. , Tsoar A., and Kadmon R.. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43:1223–1232.

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19:134–143.

Beals, E. W. 1984. Bray‐Curtis ordination – an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14:1–55.

de Bello, F. , Lavorel S., Gerhold P., Reier U., and Pärtel M.. 2010. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol. Conserv. 143:9–17.

de Bello, F. , Price J. N., Muenkemueller T., Liira J., Zobel M., Thuiller W., et al. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273. PubMed

Botta‐Dukát, Z. 2012. Co‐occurrence‐based measure of species' habitat specialization: robust, unbiased estimation in saturated communities. J. Veg. Sci. 23:201–207.

Bruun, H. H. 2000. Deficit in community species richness as explained by area and isolation of sites. Divers. Distrib. 6:129–135.

Carstensen, D. W. , Lessard J., Holt B. G., Borregaard M. K., and Rahbek C.. 2013. Introducing the biogeographic species pool. Ecography 36:1310–1318.

Chytrý, M. , and Rafajová M.. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75:1–15.

Chytrý, M. , Hennekens S. M., Jiménez‐Alfaro B., Knollová I., Dengler J., Jansen F., et al. 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19:173–180.

Cornell, H. V. , and Harrison S. P.. 2014. What are species pools and when they are important. Ann. Rev. Ecol. Systemat. 45:45–67.

De Cáceres, M. , and Legendre P.. 2008. Beals smoothing revisited. Oecologia 156:657–669. PubMed

Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology – a review. Basic Appl. Ecol. 4:493–506.

Dray, S. , and Dufour A.‐B.. 2007. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22:1–20.

Dupré, C. 2000. How to determine a regional species pool: a study in two Swedish regions. Oikos 89:128–136.

Elith, J. , and Leathwick J. R.. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677–697.

Ellenberg, H. , Weber H. E., Dull R., Wirth V., Werner W., and Paulissen D.. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18:1–248.

Eriksson, O. 1993. The species‐pool hypothesis and plant community diversity. Oikos 68:371–374.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional matrices. J. Veg. Sci. 13:191–198.

Gotelli, N. J. , and Colwell R. K.. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4:379–391.

Guisan, A. , and Thuiller W.. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:993–1009. PubMed

Hijmans, R. J. , Phillips S., Leathwick J., and Elith J.. 2013. dismo: Species distribution modeling. R package version 0.9‐3; http://CRAN.R-project.org/package=dismo.

Kalusová, V. , Chytrý M., Peet R. K., and Wentworth T. R.. 2014. Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Glob. Ecol. Biogeogr. 23:1366–1375.

Karger, D. N. , Cord A. F., Kessler M., Kreft H., Kühn I., Pompe S., et al. 2016. Delineating probabilistic species pools in ecology and biogeography. Glob. Ecol. Biogeogr. 25:489–501.

Knollová, I. , Chytrý M., Tichý L., and Hájek O.. 2005. Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. J. Veg. Sci. 16:479–486.

Lengyel, A. , Chytrý M., and Tichý L.. 2011. Heterogeneity‐constrained random resampling of phytosociological databases. J. Veg. Sci. 22:175–183.

Lennon, J. J. , Koleff P., Greenwood J. J. D., and Gaston K. J.. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70:966–979.

Lepš, J. 2001. Species‐pool hypothesis: limits to its testing. Folia Geobot. 36:45–52.

Lessard, J.‐P. , Weinstein B. G., Borregaard M. K., Marske K. A., Martin D. R., McGuire J. A., et al. 2016. Process‐based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering. Am. Nat. 187:75–88. PubMed

Lewis, R. J. , de Bello F., Bennett J. A., Fibich P., Finerty G. E., Götzenberger L., et al. 2016a. Applying the dark diversity concept to nature conservation. Conserv. Biol. doi: 10.1111/cobi.12723 [Epub ahead of print]. PubMed DOI

Lewis, R. J. , Szava‐Kovats R., and Pärtel M.. 2016b. Estimating dark diversity and species pools: an empirical assessment of two methods. Methods Ecol. Evol. 7:104–113.

Münzbergová, Z. , and Herben T.. 2004. Identification of suitable unoccupied habitats in metapopulation studies using co‐occurrence of species. Oikos 105:408–414.

Oksanen, J. , Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O'Hara R. B., et al. 2015. vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan.

Ozinga, W. A. , Schaminée J. H. J., Bekker R. M., Bonn S., Poschlod P., Tackenberg O., et al. 2005. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561.

Parolo, G. , Rossi G., and Ferrarini A.. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. J. Appl. Ecol. 45:1410–1418.

Pärtel, M. , Zobel M., Zobel K., and van der Maarel E.. 1996. The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117.

Pärtel, M. , Szava‐Kovats R., and Zobel M.. 2011. Dark diversity: shedding light on absent species. Trends Ecol. Evol. 26:124–128. PubMed

R Core Team . 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Reese, G. C. , Wilson K. R., and Flather C. H.. 2014. Performance of species richness estimators across assemblage types and survey parameters. Glob. Ecol. Biogeogr. 23:585–594.

Riibak, K. , Reitalu T., Tamme R., Helm A., Gerhold P., Znamenskiy S., et al. 2015. Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress‐tolerance. Ecography 38:713–721.

Sádlo, J. , Chytrý M., and Pyšek P.. 2007. Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79:303–321.

Shtilerman, E. , Thompson C. J., Stone L., Bode M., and Burgman M.. 2014. A novel method for estimating the number of species within a region. Proceed. Royal Soc. B: Biol. Sci. 281:20133009. PubMed PMC

Szava‐Kovats, R. , Ronk A., and Pärtel M.. 2013. Pattern without bias: local‐regional richness relationship revisited. Ecology 94:1986–1992. PubMed

Thuiller, W. , Lafourcade B., Engler R., and Araújo M. B.. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32:369–373.

Tichý, L. , and Chytrý M.. 2006. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17:809–818.

Warton, D. I. , Wright I. J., Falster D. S., and Westoby M.. 2006. Bivariate line‐fitting methods for allometry. Biol. Rev. 81:259–291. PubMed

Zobel, M. 2016. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27:8–18.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...