Large-scale dark diversity estimates: new perspectives with combined methods

. 2016 Sep ; 6 (17) : 6266-81. [epub] 20160804

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27648241

Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.

Zobrazit více v PubMed

Allouche, O. , Tsoar A., and Kadmon R.. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43:1223–1232.

Araújo, M. B. , and New M.. 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22:42–47. PubMed

Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Modell. 200:1–19.

Beals, E. W. 1984. Bray‐curtis ordination ‐ an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14:1–55.

de Bello, F. , Fibich P., Zeleny D., Kopecky M., Mudrak O., Chytry M., et al. 2016. Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecol. Evol. 6:4088–4101. PubMed PMC

Bossard, M. , Feranec J., and Otahel J.. 2000. CORINE land cover technical guide: Addendum 2000. European Environment Agency, Copenhagen.

Bucklin, D. N. , Basille M., Benscoter A. M., Brandt L. A., Mazzotti F. J., Romañach S. S., et al. 2015. Comparing species distribution models constructed with different subsets of environmental predictors. Divers. Distrib. 21:23–35.

Carstensen, D. W. , Lessard J.‐P., Holt B. G., Krabbe Borregaard M., and Rahbek C.. 2013. Introducing the biogeographic species pool. Ecography, 36:1310–1318.

Cornell, H. V. , and Harrison S. P.. 2014. What are species pools and when are they important? Annu. Rev. Ecol. Evol. Syst. 45:45–67.

De Caceres, M. , and Legendre P.. 2008. Beals smoothing revisited. Oecologia 156:657–669. PubMed

Dormann, C. F. , McPherson J. M., Araújo M. B., Bivand R., Bolliger J., Carl G., et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628.

Dupré, C. 2000. How to determine a regional species pool: a study in two Swedish regions. Oikos 89:128–136.

Elith, J. , Graham C. H., Anderson P., Dudík M., Ferrier S., Guisan A., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29:129–151.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional matrices. J. Veg. Sci. 13:191–198.

Forbes, C. , Evans M., Hastings N., and Peacock B.. 2011. Statistical distributions. John Wiley & Sons, New York.

Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405:220–227. PubMed

Graves, G. R. , and Rahbek C.. 2005. Source pool geometry and the assembly of continental avifaunas. Proc. Natl Acad. Sci. USA 102:7871–7876. PubMed PMC

Hijmans, R. J. , Cameron S. E., Parra J. L., Jones P. G., and Jarvis A.. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978.

Husson, F. , Josse J., Le S., and Mazet J.. 2015. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining, R package version 1.29.

Jalas, J. , and Suominen J.. 1972. –1994. Atlas Florae Europaeae. Volume 1 (1972), 2 (1973), 3 (1976), 4 (1979), 5 (1980), 6 (1983), 7 (1986), 8 (1989), 9 (1991), 10 (1994). Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

Jalas, J. , Suominen J., and Lampinen R.. 1996. Atlas Florae Europaeae. Volume 11. Committee for Mapping the Flora of Europe and Societas Biologica Fennica, Helsinki.

Jalas, J. , Suominen J., Lampinen R., and Kurtto A.. 1999. Atlas Florae Europaeae Volume 12. Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

Karger, D. N. , Cord A. F., Kessler M., Kreft H., Kühn I., Pompe S., et al. 2016. Delineating probabilistic species pools in ecology and biogeography. Glob. Ecol. Biogeogr. 25:489–501.

Kowalski, G. 2011. Information retrieval architecture and algorithms. Springer, New York.

Kurtto, A. , Lampinen R., and Junikka L.. 2004. Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 13. Rosaceae (Spiraea to Fragaria, excl. Rubus). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.

Lampinen, R. , and Lahti T.. 2013. Kasviatlas 2012. Helsingin Yliopisto, Luonnontieteellinen keskusmuseo, Helsinki.

Legendre, P. 2014. lmodel2: Model II Regression. – R package version 1.7‐2.

Lessard, J. P. , Belmaker J., Myers J. A., Chase J. M., and Rahbek C.. 2012. Inferring local ecological processes amid species pool influences. Trends Ecol. Evol. 27:600–607. PubMed

Lessard, J.‐P. , Weinstein B. G., Borregaard M. K., Marske K. A., Martin D. R., McGuire J. A., et al. 2016. Process‐based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering. Am. Nat. 187:75–88. PubMed

Lewis, R. J. , de Bello F., Bennett J. A., Fibich P., Finerty G. E., Götzenberger L., et al. 2016a. Applying the dark diversity concept to nature conservation. Conserv. Biol., doi: 10.1111/cobi.12723. PubMed DOI

Lewis, R. J. , Szava‐Kovats R., and Pärtel M.. 2016b. Estimating dark diversity and species pools: an empirical assessment of two methods. Methods Ecol. Evol. 7:104–113.

MacArthur, W. , and Wilson E.. 1967. The theory of island biogeography. Monogr. Popul. Biol 1:202.

Manne, L. L. , and Williams P. H.. 2003. Building indicator groups based on species characteristics can improve conservation planning. Anim. Conserv. 6:291–297.

Meynard, C. N. , and Quinn J. F.. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34:1455–1469.

Nogués‐Bravo, D. , and Araújo M. B.. 2006. Species richness, area and climate correlates. Glob. Ecol. Biogeogr. 15:452–460.

Oksanen, J. , Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O'Hara R. B., et al. 2013. vegan: Community Ecology Package – R package ver. 2.0–10.

Ovaskainen, O. , and Soininen J.. 2011. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92:289–295. PubMed

Pärtel, M. , Szava‐Kovats R., and Zobel M.. 2011a. Dark diversity: shedding light on absent species. Trends Ecol. Evol. 26:124–128. PubMed

Pärtel, M. , Szava‐Kovats R., and Zobel M.. 2011b. Discerning the niche of dark diversity. Trends Ecol. Evol. 26:265–266. PubMed

Pärtel, M. , Szava‐Kovats R., and Zobel M.. 2013. Community completeness: linking local and dark diversity within the species pool concept. Folia Geobot. 48:307–317.

Pearson, R. G. , Thuiller W., Araújo M. B., Martinez‐Meyer E., Brotons L., McClean C., et al. 2006. Model‐based uncertainty in species range prediction. J. Biogeogr. 33:1704–1711.

Pinheiro, J. , Bates D., DebRoy S., Sarkar D., and R Core Team . 2015. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1‐122.

R Core Team . 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Riibak, K. , Reitalu T., Tamme R., Helm A., Gerhold P., Znamenskiy S., et al. 2015. Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress‐tolerance. Ecography 38:713–721.

Ronk, A. , Szava‐Kovats R., and Pärtel M.. 2015. Applying the dark diversity concept to plants at the European scale. Ecography 38:1015–1025.

Segurado, P. , and Araújo M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31:1555–1568.

Thibaud, E. , Petitpierre B., Broennimann O., Davison A. C., and Guisan A.. 2014. Measuring the relative effect of factors affecting species distribution model predictions. Methods Ecol. Evol. 5:947–955.

Thuiller, W. 2003. BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9:1353–1362. PubMed PMC

Thuiller, W. , Lafourcade B., Engler R., and Araújo M. B.. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32:369–373.

Zobel, M. 2016. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27:8–18.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...