Absolute energy levels in nanodiamonds of different origins and surface chemistries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37638158
PubMed Central
PMC10448352
DOI
10.1039/d3na00205e
PII: d3na00205e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanodiamonds (NDs) are versatile, broadly available nanomaterials with a set of features highly attractive for applications from biology over energy harvesting to quantum technologies. Via synthesis and surface chemistry, NDs can be tuned from the sub-micron to the single-digit size, from conductive to insulating, from hydrophobic to hydrophilic, and from positively to negatively charged surface by simple annealing processes. Such ND diversity makes it difficult to understand and take advantage of their electronic properties. Here we present a systematic correlated study of structural and electronic properties of NDs with different origins and surface terminations. The absolute energy level diagrams are obtained by the combination of optical (UV-vis) and photoelectron (UPS) spectroscopies, Kelvin probe measurements, and energy-resolved electrochemical impedance spectroscopy (ER-EIS). The energy levels and density of states in the bandgap of NDs are correlated with the surface chemistry and structure characterized by FTIR and Raman spectroscopy. We show profound differences in energy band shifts (by up to 3 eV), Fermi level position (from p-type to n-type), electron affinity (from +0.5 eV to -2.2 eV), optical band gap (5.2 eV to 5.5 eV), band gap states (tail or mid-gap), and electrical conductivity depending on the high-pressure, high-temperature and detonation origin of NDs as well as on the effects of NDs' oxidation, hydrogenation, sp2/sp3 carbon phases and surface adsorbates. These data are fundamental for understanding and designing NDs' optoelectrochemical functional mechanisms in diverse application areas.
Faculty of Electrical Engineering Czech Technical University Prague 166 27 Prague Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 182 21 Prague 8 Czech Republic
Institute of Physics Slovak Academy of Sciences Dúbravská cesta 9 845 11 Bratislava Slovak Republic
Zobrazit více v PubMed
Krueger A. Lang D. Adv. Funct. Mater. 2012;22:890–906. doi: 10.1002/adfm.201102670. DOI
Mochalin V. N. Shenderova O. Ho D. Gogotsi Y. Nat. Nanotechnol. 2012;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Nunn N. Torelli M. McGuire G. Shenderova O. Curr. Opin. Solid State Mater. Sci. 2017;21:1–9. doi: 10.1016/j.cossms.2016.06.008. DOI
Schmidlin L. Pichot V. Comet M. Josset S. Rabu P. Spitzer D. Diamond Relat. Mater. 2012;22:113–117. doi: 10.1016/j.diamond.2011.12.009. DOI
Yeap W. S. Chen S. Loh K. P. Langmuir. 2009;25:185–191. doi: 10.1021/la8029787. PubMed DOI
Vlk A. Ledinsky M. Shiryaev A. Ekimov E. Stehlik S. J. Phys. Chem. C. 2022;126:6318–6324. doi: 10.1021/acs.jpcc.2c00446. DOI
Boudou J.-P. Tisler J. Reuter R. Thorel A. Curmi P. A. Jelezko F. Wrachtrup J. Diamond Relat. Mater. 2013;37:80–86. doi: 10.1016/j.diamond.2013.05.006. DOI
Bolshedvorskii S. V. Zeleneev A. I. Vorobyov V. V. Soshenko V. V. Rubinas O. R. Zhulikov L. A. Pivovarov P. A. Sorokin V. N. Smolyaninov A. N. Kulikova L. F. Garanina A. S. Lyapin S. G. Agafonov V. N. Uzbekov R. E. Davydov V. A. Akimov A. V. ACS Appl. Nano Mater. 2019;2:4765–4772. doi: 10.1021/acsanm.9b00580. DOI
Shershulin V. A. Sedov V. S. Ermakova A. Jantzen U. Rogers L. Huhlina A. A. Teverovskaya E. G. Ralchenko V. G. Jelezko F. Vlasov I. I. Phys. Status Solidi A. 2015;212:2600–2605. doi: 10.1002/pssa.201532204. DOI
Gibson N. Shenderova O. Luo T. J. M. Moseenkov S. Bondar V. Puzyr A. Purtov K. Fitzgerald Z. Brenner D. W. Diamond Relat. Mater. 2009;18:620–626. doi: 10.1016/j.diamond.2008.10.049. DOI
Huang H. Pierstorff E. Osawa E. Ho D. Nano Lett. 2007;7:3305–3314. doi: 10.1021/nl071521o. PubMed DOI
Shimkunas R. A. Robinson E. Lam R. Lu S. Xu X. Zhang X.-Q. Huang H. Osawa E. Ho D. Biomaterials. 2009;30:5720–5728. doi: 10.1016/j.biomaterials.2009.07.004. PubMed DOI
Miller B. S. Bezinge L. Gliddon H. D. Huang D. Dold G. Gray E. R. Heaney J. Dobson P. J. Nastouli E. Morton J. J. L. McKendry R. A. Nature. 2020;587:588–593. doi: 10.1038/s41586-020-2917-1. PubMed DOI
Stehlik S. Glatzel T. Pichot V. Pawlak R. Meyer E. Spitzer D. Rezek B. Diamond Relat. Mater. 2016;63:97–102. doi: 10.1016/j.diamond.2015.08.016. DOI
Čermák J. Kozak H. Stehlík Š. Švrček V. Pichot V. Spitzer D. Kromka A. Rezek B. MRS Adv. 2016;1:1105–1111. doi: 10.1557/adv.2016.112. DOI
Cui J. B. Ristein J. Ley L. Phys. Rev. Lett. 1998;81:429–432. doi: 10.1103/PhysRevLett.81.429. DOI
Maier F. Ristein J. Ley L. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:165411. doi: 10.1103/PhysRevB.64.165411. DOI
Ristein J. Surf. Sci. 2006;600:3677–3689. doi: 10.1016/j.susc.2006.01.087. DOI
Feigl C. A. Motevalli B. Parker A. J. Sun B. Barnard A. S. Nanoscale Horiz. 2019;4:983–990. doi: 10.1039/C9NH00060G. DOI
Buchner F. Kirschbaum T. Venerosy A. Girard H. Arnault J.-C. Kiendl B. Krueger A. Larsson K. Bande A. Petit T. Merschjann C. Nanoscale. 2022;14:17188–17195. doi: 10.1039/D2NR03919B. PubMed DOI PMC
Duan X. Tian W. Zhang H. Sun H. Ao Z. Shao Z. Wang S. ACS Catal. 2019;9:7494–7519. doi: 10.1021/acscatal.9b01565. DOI
Ginés L. Mandal S. Ashek-I-Ahmed A.-I.-A. Cheng C.-L. Sow M. Williams O. A. Nanoscale. 2017;9:12549–12555. doi: 10.1039/C7NR03200E. PubMed DOI
Henych J. Stehlík Š. Mazanec K. Tolasz J. Čermák J. Rezek B. Mattsson A. Österlund L. Appl. Catal., B. 2019;259:118097. doi: 10.1016/j.apcatb.2019.118097. DOI
Jang D. M. Myung Y. Im H. S. Seo Y. S. Cho Y. J. Lee C. W. Park J. Jee A.-Y. Lee M. Chem. Commun. 2012;48:696–698. doi: 10.1039/C1CC16210A. PubMed DOI
Wang H. Tzeng Y.-K. Ji Y. Li Y. Li J. Zheng X. Yang A. Liu Y. Gong Y. Cai L. Li Y. Zhang X. Chen W. Liu B. Lu H. Melosh N. A. Shen Z.-X. Chan K. Tan T. Chu S. Cui Y. Nat. Nanotechnol. 2020;15:131–137. doi: 10.1038/s41565-019-0603-y. PubMed DOI
Yu S. Yang N. Zhuang H. Meyer J. Mandal S. Williams O. A. Lilge I. Schönherr H. Jiang X. J. Phys. Chem. C. 2015;119:18918–18926. doi: 10.1021/acs.jpcc.5b04719. DOI
Liu Y. Tzeng Y.-K. Lin D. Pei A. Lu H. Melosh N. A. Shen Z.-X. Chu S. Cui Y. Joule. 2018;2:1595–1609. doi: 10.1016/j.joule.2018.05.007. DOI
Jothiramalingam Sankaran K. Kunuku S. Sundaravel B. Hsieh P.-Y. Chen H.-C. Leou K.-C. Tai N.-H. Lin I.-N. Nanoscale. 2015;7:4377–4385. doi: 10.1039/C4NR07030E. PubMed DOI
Zhong Y. L. Midya A. Ng Z. Chen Z.-K. Daenen M. Nesladek M. Loh K. P. J. Am. Chem. Soc. 2008;130:17218–17219. doi: 10.1021/ja805977f. PubMed DOI
Nagata A. Takeo O. K. U. Kikuchi K. Suzuki A. Yamasaki Y. Osawa E. Prog. Nat. Sci. 2010;20:38–43. doi: 10.1016/S1002-0071(12)60004-5. DOI
Miliaieva D. Matunova P. Cermak J. Stehlik S. Cernescu A. Remes Z. Stenclova P. Muller M. Rezek B. Sci. Rep. 2021;11:590. doi: 10.1038/s41598-020-80438-3. PubMed DOI PMC
Cheng L. Zhu S. Ouyang X. Zheng W. Diamond Relat. Mater. 2023;132:109638. doi: 10.1016/j.diamond.2022.109638. DOI
Kondo T. Neitzel I. Mochalin V. N. Urai J. Yuasa M. Gogotsi Y. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI
Niu K.-Y. Zheng H.-M. Li Z.-Q. Yang J. Sun J. Du X.-W. Angew. Chem. 2011;123:4185–4188. doi: 10.1002/ange.201007731. PubMed DOI
Matunová P. Jirásek V. Rezek B. Phys. Status Solidi B. 2019:1900176. doi: 10.1002/pssb.201900176. DOI
Fokin A. A. Schreiner P. R. Mol. Phys. 2009;107:823–830. doi: 10.1080/00268970802649625. DOI
Osswald S. Yushin G. Mochalin V. Kucheyev S. O. Gogotsi Y. J. Am. Chem. Soc. 2006;128:11635–11642. doi: 10.1021/ja063303n. PubMed DOI
Korepanov V. I. Hamaguchi H. Osawa E. Ermolenkov V. Lednev I. K. Etzold B. J. M. Levinson O. Zousman B. Epperla C. P. Chang H.-C. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI
Osswald S. Havel M. Mochalin V. Yushin G. Gogotsi Y. Diamond Relat. Mater. 2008;17:1122–1126. doi: 10.1016/j.diamond.2008.01.102. DOI
Stehlik S. Varga M. Ledinsky M. Miliaieva D. Kozak H. Skakalova V. Mangler C. Pennycook T. J. Meyer J. C. Kromka A. Rezek B. Sci. Rep. 2016;6:38419. doi: 10.1038/srep38419. PubMed DOI PMC
Stehlik S. Mermoux M. Schummer B. Vanek O. Kolarova K. Stenclova P. Vlk A. Ledinsky M. Pfeifer R. Romanyuk O. Gordeev I. Roussel-Dherbey F. Nemeckova Z. Henych J. Bezdicka P. Kromka A. Rezek B. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI
Korepanov V. I. Hamaguchi H. Osawa E. Ermolenkov V. Lednev I. K. Etzold B. J. M. Levinson O. Zousman B. Epperla C. P. Chang H.-C. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI
Turcheniuk K. Mochalin V. N. Nanotechnology. 2017;28:252001. doi: 10.1088/1361-6528/aa6ae4. PubMed DOI
Williams O. A. Hees J. Dieker C. Jäger W. Kirste L. Nebel C. E. ACS Nano. 2010;4:4824–4830. doi: 10.1021/nn100748k. PubMed DOI
Kondo T. Neitzel I. Mochalin V. N. Urai J. Yuasa M. Gogotsi Y. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI
Ahmed A.-I. Mandal S. Gines L. Williams O. A. Cheng C.-L. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI
Stehlik S. Varga M. Stenclova P. Ondic L. Ledinsky M. Pangrac J. Vanek O. Lipov J. Kromka A. Rezek B. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI
Mikesova J. Miliaieva D. Stenclova P. Kindermann M. Vuckova T. Madlikova M. Fabry M. Veverka V. Schimer J. Krejci P. Stehlik S. Cigler P. Carbon. 2022;195:372–386. doi: 10.1016/j.carbon.2022.04.017. DOI
Saoudi L. Girard H. A. Larquet E. Mermoux M. Leroy J. Arnault J.-C. Carbon. 2023;202:438–449. doi: 10.1016/j.carbon.2022.10.084. DOI
Kolarova K. Bydzovska I. Romanyuk O. Shagieva E. Ukraintsev E. Kromka A. Rezek B. Stehlik S. Diamond Relat. Mater. 2023:109754. doi: 10.1016/j.diamond.2023.109754. DOI
Tauc J. Grigorovici R. Vancu A. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Davis E. A. Mott N. F. Philos. Mag. 1970;22:0903–0922. doi: 10.1080/14786437008221061. DOI
Shing A. M. Tolstova Y. Lewis N. S. Atwater H. A. Appl. Phys. A. 2017;123:735. doi: 10.1007/s00339-017-1341-3. DOI
Nádaždy V. Schauer F. Gmucová K. Appl. Phys. Lett. 2014;105:142109. doi: 10.1063/1.4898068. DOI
Volk S. Yazdani N. Sanusoglu E. Yarema O. Yarema M. Wood V. J. Phys. Chem. Lett. 2018;9:1384–1392. doi: 10.1021/acs.jpclett.8b00109. PubMed DOI
Turner S. Shenderova O. Pieve F. D. Lu Y. Yücelen E. Verbeeck J. Lamoen D. Tendeloo G. V. Phys. Status Solidi A. 2013;210:1976–1984. doi: 10.1002/pssa.201300315. DOI
Kudryavtsev O. S. Bagramov R. H. Satanin A. M. Shiryaev A. A. Lebedev O. I. Romshin A. M. Pasternak D. G. Nikolaev A. V. Filonenko V. P. Vlasov I. I. Nano Lett. 2022;22:2589–2594. doi: 10.1021/acs.nanolett.1c04887. PubMed DOI
Ekimov E. Shiryaev A. A. Grigoriev Y. Averin A. Shagieva E. Stehlik S. Kondrin M. Nanomaterials. 2022;12:351. doi: 10.3390/nano12030351. PubMed DOI PMC
Wolcott A. Schiros T. Trusheim M. E. Chen E. H. Nordlund D. Diaz R. E. Gaathon O. Englund D. Owen J. S. J. Phys. Chem. C. 2014;118:26695–26702. doi: 10.1021/jp506992c. PubMed DOI PMC
Ji S. Jiang T. Xu K. Li S. Appl. Surf. Sci. 1998;133:231–238. doi: 10.1016/S0169-4332(98)00209-8. DOI
Petit T. Puskar L. Dolenko T. Choudhury S. Ritter E. Burikov S. Laptinskiy K. Brzustowski Q. Schade U. Yuzawa H. Nagasaka M. Kosugi N. Kurzyp M. Venerosy A. Girard H. Arnault J.-C. Osawa E. Nunn N. Shenderova O. Aziz E. F. J. Phys. Chem. C. 2017;121:5185–5194. doi: 10.1021/acs.jpcc.7b00721. DOI
Stehlik S. Varga M. Ledinsky M. Jirasek V. Artemenko A. Kozak H. Ondic L. Skakalova V. Argentero G. Pennycook T. Meyer J. C. Fejfar A. Kromka A. Rezek B. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Koshcheev A. P. Russ. J. Gen. Chem. 2009;79:2033–2044. doi: 10.1134/S1070363209090357. DOI
Orwa J. O. Nugent K. W. Jamieson D. N. Prawer S. Phys. Rev. B: Condens. Matter Mater. Phys. 2000;62:5461–5472. doi: 10.1103/PhysRevB.62.5461. DOI
Osswald S. Mochalin V. N. Havel M. Yushin G. Gogotsi Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;80:075419. doi: 10.1103/PhysRevB.80.075419. DOI
Ferrari A. C. Robertson J. Philos. Trans. R. Soc., A. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI
Turner S. Lebedev O. I. Shenderova O. Vlasov I. I. Verbeeck J. Van Tendeloo G. Adv. Funct. Mater. 2009;19:2116–2124. doi: 10.1002/adfm.200801872. DOI
Mermoux M. Crisci A. Petit T. Girard H. A. Arnault J.-C. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI
Mermoux M. Chang S. Girard H. A. Arnault J.-C. Diamond Relat. Mater. 2018;87:248–260. doi: 10.1016/j.diamond.2018.06.001. DOI
Reich K. V. JETP Lett. 2011;94:22. doi: 10.1134/S0021364011130169. DOI
Jeong H. K. Yang C. Kim B. S. Kim K. Europhys. Lett. 2010;92:37005. doi: 10.1209/0295-5075/92/37005. DOI
Zuaznabar-Gardona J. C. Fragoso A. Synth. Met. 2020;266:116434. doi: 10.1016/j.synthmet.2020.116434. DOI
Ago H. Kugler T. Cacialli F. Salaneck W. R. Shaffer M. S. P. Windle A. H. Friend R. H. J. Phys. Chem. B. 1999;103:8116–8121. doi: 10.1021/jp991659y. DOI
Chakrapani V. Angus J. C. Anderson A. B. Wolter S. D. Stoner B. R. Sumanasekera G. U. Science. 2007;318:1424–1430. doi: 10.1126/science.1148841. PubMed DOI
Nebel C. E. Science. 2007;318:1391–1392. doi: 10.1126/science.1151314. PubMed DOI
Chen W. Qi D. Gao X. Wee A. T. S. Prog. Surf. Sci. 2009;84:279–321. doi: 10.1016/j.progsurf.2009.06.002. DOI
Crawford K. G. Maini I. Macdonald D. A. Moran D. A. J. Prog. Surf. Sci. 2021;96:100613. doi: 10.1016/j.progsurf.2021.100613. DOI
Maier F. Riedel M. Mantel B. Ristein J. Ley L. Phys. Rev. Lett. 2000;85:3472–3475. doi: 10.1103/PhysRevLett.85.3472. PubMed DOI
Bauer N. J. Phys. Chem. 1960;64:833–837. doi: 10.1021/j100836a001. DOI
Cui J. B. Ristein J. Ley L. Phys. Rev. Lett. 1998;81:429–432. doi: 10.1103/PhysRevLett.81.429. DOI
Maier F. Ristein J. Ley L. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:165411. doi: 10.1103/PhysRevB.64.165411. DOI
Krátká M. Kromka A. Ukraintsev E. Ledinský M. Brož A. Kalbacova M. Rezek B. Sens. Actuators, B. 2012;166–167:239–245. doi: 10.1016/j.snb.2012.02.049. DOI
Buchner F. Kirschbaum T. Venerosy A. Girard H. Arnault J.-C. Kiendl B. Krueger A. Larsson K. Bande A. Petit T. Merschjann C. Nanoscale. 2022;14:17188–17195. doi: 10.1039/D2NR03919B. PubMed DOI PMC
Nebel C. E. Rezek B. Shin D. Watanabe H. Phys. Status Solidi A. 2006;203:3273–3298. doi: 10.1002/pssa.200671401. DOI
Giambrone N. McCrory M. Kumar A. Ram M. K. Thin Solid Films. 2016;615:226–232. doi: 10.1016/j.tsf.2016.07.028. DOI