Absolute energy levels in nanodiamonds of different origins and surface chemistries

. 2023 Aug 24 ; 5 (17) : 4402-4414. [epub] 20230620

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37638158

Nanodiamonds (NDs) are versatile, broadly available nanomaterials with a set of features highly attractive for applications from biology over energy harvesting to quantum technologies. Via synthesis and surface chemistry, NDs can be tuned from the sub-micron to the single-digit size, from conductive to insulating, from hydrophobic to hydrophilic, and from positively to negatively charged surface by simple annealing processes. Such ND diversity makes it difficult to understand and take advantage of their electronic properties. Here we present a systematic correlated study of structural and electronic properties of NDs with different origins and surface terminations. The absolute energy level diagrams are obtained by the combination of optical (UV-vis) and photoelectron (UPS) spectroscopies, Kelvin probe measurements, and energy-resolved electrochemical impedance spectroscopy (ER-EIS). The energy levels and density of states in the bandgap of NDs are correlated with the surface chemistry and structure characterized by FTIR and Raman spectroscopy. We show profound differences in energy band shifts (by up to 3 eV), Fermi level position (from p-type to n-type), electron affinity (from +0.5 eV to -2.2 eV), optical band gap (5.2 eV to 5.5 eV), band gap states (tail or mid-gap), and electrical conductivity depending on the high-pressure, high-temperature and detonation origin of NDs as well as on the effects of NDs' oxidation, hydrogenation, sp2/sp3 carbon phases and surface adsorbates. These data are fundamental for understanding and designing NDs' optoelectrochemical functional mechanisms in diverse application areas.

Zobrazit více v PubMed

Krueger A. Lang D. Adv. Funct. Mater. 2012;22:890–906. doi: 10.1002/adfm.201102670. DOI

Mochalin V. N. Shenderova O. Ho D. Gogotsi Y. Nat. Nanotechnol. 2012;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI

Nunn N. Torelli M. McGuire G. Shenderova O. Curr. Opin. Solid State Mater. Sci. 2017;21:1–9. doi: 10.1016/j.cossms.2016.06.008. DOI

Schmidlin L. Pichot V. Comet M. Josset S. Rabu P. Spitzer D. Diamond Relat. Mater. 2012;22:113–117. doi: 10.1016/j.diamond.2011.12.009. DOI

Yeap W. S. Chen S. Loh K. P. Langmuir. 2009;25:185–191. doi: 10.1021/la8029787. PubMed DOI

Vlk A. Ledinsky M. Shiryaev A. Ekimov E. Stehlik S. J. Phys. Chem. C. 2022;126:6318–6324. doi: 10.1021/acs.jpcc.2c00446. DOI

Boudou J.-P. Tisler J. Reuter R. Thorel A. Curmi P. A. Jelezko F. Wrachtrup J. Diamond Relat. Mater. 2013;37:80–86. doi: 10.1016/j.diamond.2013.05.006. DOI

Bolshedvorskii S. V. Zeleneev A. I. Vorobyov V. V. Soshenko V. V. Rubinas O. R. Zhulikov L. A. Pivovarov P. A. Sorokin V. N. Smolyaninov A. N. Kulikova L. F. Garanina A. S. Lyapin S. G. Agafonov V. N. Uzbekov R. E. Davydov V. A. Akimov A. V. ACS Appl. Nano Mater. 2019;2:4765–4772. doi: 10.1021/acsanm.9b00580. DOI

Shershulin V. A. Sedov V. S. Ermakova A. Jantzen U. Rogers L. Huhlina A. A. Teverovskaya E. G. Ralchenko V. G. Jelezko F. Vlasov I. I. Phys. Status Solidi A. 2015;212:2600–2605. doi: 10.1002/pssa.201532204. DOI

Gibson N. Shenderova O. Luo T. J. M. Moseenkov S. Bondar V. Puzyr A. Purtov K. Fitzgerald Z. Brenner D. W. Diamond Relat. Mater. 2009;18:620–626. doi: 10.1016/j.diamond.2008.10.049. DOI

Huang H. Pierstorff E. Osawa E. Ho D. Nano Lett. 2007;7:3305–3314. doi: 10.1021/nl071521o. PubMed DOI

Shimkunas R. A. Robinson E. Lam R. Lu S. Xu X. Zhang X.-Q. Huang H. Osawa E. Ho D. Biomaterials. 2009;30:5720–5728. doi: 10.1016/j.biomaterials.2009.07.004. PubMed DOI

Miller B. S. Bezinge L. Gliddon H. D. Huang D. Dold G. Gray E. R. Heaney J. Dobson P. J. Nastouli E. Morton J. J. L. McKendry R. A. Nature. 2020;587:588–593. doi: 10.1038/s41586-020-2917-1. PubMed DOI

Stehlik S. Glatzel T. Pichot V. Pawlak R. Meyer E. Spitzer D. Rezek B. Diamond Relat. Mater. 2016;63:97–102. doi: 10.1016/j.diamond.2015.08.016. DOI

Čermák J. Kozak H. Stehlík Š. Švrček V. Pichot V. Spitzer D. Kromka A. Rezek B. MRS Adv. 2016;1:1105–1111. doi: 10.1557/adv.2016.112. DOI

Cui J. B. Ristein J. Ley L. Phys. Rev. Lett. 1998;81:429–432. doi: 10.1103/PhysRevLett.81.429. DOI

Maier F. Ristein J. Ley L. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:165411. doi: 10.1103/PhysRevB.64.165411. DOI

Ristein J. Surf. Sci. 2006;600:3677–3689. doi: 10.1016/j.susc.2006.01.087. DOI

Feigl C. A. Motevalli B. Parker A. J. Sun B. Barnard A. S. Nanoscale Horiz. 2019;4:983–990. doi: 10.1039/C9NH00060G. DOI

Buchner F. Kirschbaum T. Venerosy A. Girard H. Arnault J.-C. Kiendl B. Krueger A. Larsson K. Bande A. Petit T. Merschjann C. Nanoscale. 2022;14:17188–17195. doi: 10.1039/D2NR03919B. PubMed DOI PMC

Duan X. Tian W. Zhang H. Sun H. Ao Z. Shao Z. Wang S. ACS Catal. 2019;9:7494–7519. doi: 10.1021/acscatal.9b01565. DOI

Ginés L. Mandal S. Ashek-I-Ahmed A.-I.-A. Cheng C.-L. Sow M. Williams O. A. Nanoscale. 2017;9:12549–12555. doi: 10.1039/C7NR03200E. PubMed DOI

Henych J. Stehlík Š. Mazanec K. Tolasz J. Čermák J. Rezek B. Mattsson A. Österlund L. Appl. Catal., B. 2019;259:118097. doi: 10.1016/j.apcatb.2019.118097. DOI

Jang D. M. Myung Y. Im H. S. Seo Y. S. Cho Y. J. Lee C. W. Park J. Jee A.-Y. Lee M. Chem. Commun. 2012;48:696–698. doi: 10.1039/C1CC16210A. PubMed DOI

Wang H. Tzeng Y.-K. Ji Y. Li Y. Li J. Zheng X. Yang A. Liu Y. Gong Y. Cai L. Li Y. Zhang X. Chen W. Liu B. Lu H. Melosh N. A. Shen Z.-X. Chan K. Tan T. Chu S. Cui Y. Nat. Nanotechnol. 2020;15:131–137. doi: 10.1038/s41565-019-0603-y. PubMed DOI

Yu S. Yang N. Zhuang H. Meyer J. Mandal S. Williams O. A. Lilge I. Schönherr H. Jiang X. J. Phys. Chem. C. 2015;119:18918–18926. doi: 10.1021/acs.jpcc.5b04719. DOI

Liu Y. Tzeng Y.-K. Lin D. Pei A. Lu H. Melosh N. A. Shen Z.-X. Chu S. Cui Y. Joule. 2018;2:1595–1609. doi: 10.1016/j.joule.2018.05.007. DOI

Jothiramalingam Sankaran K. Kunuku S. Sundaravel B. Hsieh P.-Y. Chen H.-C. Leou K.-C. Tai N.-H. Lin I.-N. Nanoscale. 2015;7:4377–4385. doi: 10.1039/C4NR07030E. PubMed DOI

Zhong Y. L. Midya A. Ng Z. Chen Z.-K. Daenen M. Nesladek M. Loh K. P. J. Am. Chem. Soc. 2008;130:17218–17219. doi: 10.1021/ja805977f. PubMed DOI

Nagata A. Takeo O. K. U. Kikuchi K. Suzuki A. Yamasaki Y. Osawa E. Prog. Nat. Sci. 2010;20:38–43. doi: 10.1016/S1002-0071(12)60004-5. DOI

Miliaieva D. Matunova P. Cermak J. Stehlik S. Cernescu A. Remes Z. Stenclova P. Muller M. Rezek B. Sci. Rep. 2021;11:590. doi: 10.1038/s41598-020-80438-3. PubMed DOI PMC

Cheng L. Zhu S. Ouyang X. Zheng W. Diamond Relat. Mater. 2023;132:109638. doi: 10.1016/j.diamond.2022.109638. DOI

Kondo T. Neitzel I. Mochalin V. N. Urai J. Yuasa M. Gogotsi Y. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI

Niu K.-Y. Zheng H.-M. Li Z.-Q. Yang J. Sun J. Du X.-W. Angew. Chem. 2011;123:4185–4188. doi: 10.1002/ange.201007731. PubMed DOI

Matunová P. Jirásek V. Rezek B. Phys. Status Solidi B. 2019:1900176. doi: 10.1002/pssb.201900176. DOI

Fokin A. A. Schreiner P. R. Mol. Phys. 2009;107:823–830. doi: 10.1080/00268970802649625. DOI

Osswald S. Yushin G. Mochalin V. Kucheyev S. O. Gogotsi Y. J. Am. Chem. Soc. 2006;128:11635–11642. doi: 10.1021/ja063303n. PubMed DOI

Korepanov V. I. Hamaguchi H. Osawa E. Ermolenkov V. Lednev I. K. Etzold B. J. M. Levinson O. Zousman B. Epperla C. P. Chang H.-C. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI

Osswald S. Havel M. Mochalin V. Yushin G. Gogotsi Y. Diamond Relat. Mater. 2008;17:1122–1126. doi: 10.1016/j.diamond.2008.01.102. DOI

Stehlik S. Varga M. Ledinsky M. Miliaieva D. Kozak H. Skakalova V. Mangler C. Pennycook T. J. Meyer J. C. Kromka A. Rezek B. Sci. Rep. 2016;6:38419. doi: 10.1038/srep38419. PubMed DOI PMC

Stehlik S. Mermoux M. Schummer B. Vanek O. Kolarova K. Stenclova P. Vlk A. Ledinsky M. Pfeifer R. Romanyuk O. Gordeev I. Roussel-Dherbey F. Nemeckova Z. Henych J. Bezdicka P. Kromka A. Rezek B. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI

Korepanov V. I. Hamaguchi H. Osawa E. Ermolenkov V. Lednev I. K. Etzold B. J. M. Levinson O. Zousman B. Epperla C. P. Chang H.-C. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI

Turcheniuk K. Mochalin V. N. Nanotechnology. 2017;28:252001. doi: 10.1088/1361-6528/aa6ae4. PubMed DOI

Williams O. A. Hees J. Dieker C. Jäger W. Kirste L. Nebel C. E. ACS Nano. 2010;4:4824–4830. doi: 10.1021/nn100748k. PubMed DOI

Kondo T. Neitzel I. Mochalin V. N. Urai J. Yuasa M. Gogotsi Y. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI

Ahmed A.-I. Mandal S. Gines L. Williams O. A. Cheng C.-L. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI

Stehlik S. Varga M. Stenclova P. Ondic L. Ledinsky M. Pangrac J. Vanek O. Lipov J. Kromka A. Rezek B. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI

Mikesova J. Miliaieva D. Stenclova P. Kindermann M. Vuckova T. Madlikova M. Fabry M. Veverka V. Schimer J. Krejci P. Stehlik S. Cigler P. Carbon. 2022;195:372–386. doi: 10.1016/j.carbon.2022.04.017. DOI

Saoudi L. Girard H. A. Larquet E. Mermoux M. Leroy J. Arnault J.-C. Carbon. 2023;202:438–449. doi: 10.1016/j.carbon.2022.10.084. DOI

Kolarova K. Bydzovska I. Romanyuk O. Shagieva E. Ukraintsev E. Kromka A. Rezek B. Stehlik S. Diamond Relat. Mater. 2023:109754. doi: 10.1016/j.diamond.2023.109754. DOI

Tauc J. Grigorovici R. Vancu A. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI

Davis E. A. Mott N. F. Philos. Mag. 1970;22:0903–0922. doi: 10.1080/14786437008221061. DOI

Shing A. M. Tolstova Y. Lewis N. S. Atwater H. A. Appl. Phys. A. 2017;123:735. doi: 10.1007/s00339-017-1341-3. DOI

Nádaždy V. Schauer F. Gmucová K. Appl. Phys. Lett. 2014;105:142109. doi: 10.1063/1.4898068. DOI

Volk S. Yazdani N. Sanusoglu E. Yarema O. Yarema M. Wood V. J. Phys. Chem. Lett. 2018;9:1384–1392. doi: 10.1021/acs.jpclett.8b00109. PubMed DOI

Turner S. Shenderova O. Pieve F. D. Lu Y. Yücelen E. Verbeeck J. Lamoen D. Tendeloo G. V. Phys. Status Solidi A. 2013;210:1976–1984. doi: 10.1002/pssa.201300315. DOI

Kudryavtsev O. S. Bagramov R. H. Satanin A. M. Shiryaev A. A. Lebedev O. I. Romshin A. M. Pasternak D. G. Nikolaev A. V. Filonenko V. P. Vlasov I. I. Nano Lett. 2022;22:2589–2594. doi: 10.1021/acs.nanolett.1c04887. PubMed DOI

Ekimov E. Shiryaev A. A. Grigoriev Y. Averin A. Shagieva E. Stehlik S. Kondrin M. Nanomaterials. 2022;12:351. doi: 10.3390/nano12030351. PubMed DOI PMC

Wolcott A. Schiros T. Trusheim M. E. Chen E. H. Nordlund D. Diaz R. E. Gaathon O. Englund D. Owen J. S. J. Phys. Chem. C. 2014;118:26695–26702. doi: 10.1021/jp506992c. PubMed DOI PMC

Ji S. Jiang T. Xu K. Li S. Appl. Surf. Sci. 1998;133:231–238. doi: 10.1016/S0169-4332(98)00209-8. DOI

Petit T. Puskar L. Dolenko T. Choudhury S. Ritter E. Burikov S. Laptinskiy K. Brzustowski Q. Schade U. Yuzawa H. Nagasaka M. Kosugi N. Kurzyp M. Venerosy A. Girard H. Arnault J.-C. Osawa E. Nunn N. Shenderova O. Aziz E. F. J. Phys. Chem. C. 2017;121:5185–5194. doi: 10.1021/acs.jpcc.7b00721. DOI

Stehlik S. Varga M. Ledinsky M. Jirasek V. Artemenko A. Kozak H. Ondic L. Skakalova V. Argentero G. Pennycook T. Meyer J. C. Fejfar A. Kromka A. Rezek B. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC

Koshcheev A. P. Russ. J. Gen. Chem. 2009;79:2033–2044. doi: 10.1134/S1070363209090357. DOI

Orwa J. O. Nugent K. W. Jamieson D. N. Prawer S. Phys. Rev. B: Condens. Matter Mater. Phys. 2000;62:5461–5472. doi: 10.1103/PhysRevB.62.5461. DOI

Osswald S. Mochalin V. N. Havel M. Yushin G. Gogotsi Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;80:075419. doi: 10.1103/PhysRevB.80.075419. DOI

Ferrari A. C. Robertson J. Philos. Trans. R. Soc., A. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI

Turner S. Lebedev O. I. Shenderova O. Vlasov I. I. Verbeeck J. Van Tendeloo G. Adv. Funct. Mater. 2009;19:2116–2124. doi: 10.1002/adfm.200801872. DOI

Mermoux M. Crisci A. Petit T. Girard H. A. Arnault J.-C. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI

Mermoux M. Chang S. Girard H. A. Arnault J.-C. Diamond Relat. Mater. 2018;87:248–260. doi: 10.1016/j.diamond.2018.06.001. DOI

Reich K. V. JETP Lett. 2011;94:22. doi: 10.1134/S0021364011130169. DOI

Jeong H. K. Yang C. Kim B. S. Kim K. Europhys. Lett. 2010;92:37005. doi: 10.1209/0295-5075/92/37005. DOI

Zuaznabar-Gardona J. C. Fragoso A. Synth. Met. 2020;266:116434. doi: 10.1016/j.synthmet.2020.116434. DOI

Ago H. Kugler T. Cacialli F. Salaneck W. R. Shaffer M. S. P. Windle A. H. Friend R. H. J. Phys. Chem. B. 1999;103:8116–8121. doi: 10.1021/jp991659y. DOI

Chakrapani V. Angus J. C. Anderson A. B. Wolter S. D. Stoner B. R. Sumanasekera G. U. Science. 2007;318:1424–1430. doi: 10.1126/science.1148841. PubMed DOI

Nebel C. E. Science. 2007;318:1391–1392. doi: 10.1126/science.1151314. PubMed DOI

Chen W. Qi D. Gao X. Wee A. T. S. Prog. Surf. Sci. 2009;84:279–321. doi: 10.1016/j.progsurf.2009.06.002. DOI

Crawford K. G. Maini I. Macdonald D. A. Moran D. A. J. Prog. Surf. Sci. 2021;96:100613. doi: 10.1016/j.progsurf.2021.100613. DOI

Maier F. Riedel M. Mantel B. Ristein J. Ley L. Phys. Rev. Lett. 2000;85:3472–3475. doi: 10.1103/PhysRevLett.85.3472. PubMed DOI

Bauer N. J. Phys. Chem. 1960;64:833–837. doi: 10.1021/j100836a001. DOI

Cui J. B. Ristein J. Ley L. Phys. Rev. Lett. 1998;81:429–432. doi: 10.1103/PhysRevLett.81.429. DOI

Maier F. Ristein J. Ley L. Phys. Rev. B: Condens. Matter Mater. Phys. 2001;64:165411. doi: 10.1103/PhysRevB.64.165411. DOI

Krátká M. Kromka A. Ukraintsev E. Ledinský M. Brož A. Kalbacova M. Rezek B. Sens. Actuators, B. 2012;166–167:239–245. doi: 10.1016/j.snb.2012.02.049. DOI

Buchner F. Kirschbaum T. Venerosy A. Girard H. Arnault J.-C. Kiendl B. Krueger A. Larsson K. Bande A. Petit T. Merschjann C. Nanoscale. 2022;14:17188–17195. doi: 10.1039/D2NR03919B. PubMed DOI PMC

Nebel C. E. Rezek B. Shin D. Watanabe H. Phys. Status Solidi A. 2006;203:3273–3298. doi: 10.1002/pssa.200671401. DOI

Giambrone N. McCrory M. Kumar A. Ram M. K. Thin Solid Films. 2016;615:226–232. doi: 10.1016/j.tsf.2016.07.028. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...