High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution

. 2016 Dec 02 ; 6 () : 38419. [epub] 20161202

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27910924

Grantová podpora
I 2344 Austrian Science Fund FWF - Austria

Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.

Zobrazit více v PubMed

Mochalin V. N., Shenderova O., Ho D. & Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011). PubMed

Vlasov I. I. et al.. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2013). PubMed

Stehlik S. et al.. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C 119, 27708–27720 (2015). PubMed PMC

Osswald S., Mochalin V. N., Havel M., Yushin G. & Gogotsi Y. Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80, 75419 (2009).

Grotz B. et al.. Charge state manipulation of qubits in diamond. Nat. Commun. 3, 729 (2012). PubMed PMC

Boudou J.-P. et al.. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20, 235602 (2009). PubMed PMC

Krueger A. & Lang D. Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 22, 890–906 (2012).

Schrand A., Hens S. A. C. & Shenderova O. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18–74 (2009).

Shenderova O. A. & McGuire G. E. Science and engineering of nanodiamond particle surfaces for biological applications (Review). Biointerphases 10, 30802 (2015). PubMed

Khalid A. et al.. Lifetime Reduction and Enhanced Emission of Single Photon Color Centers in Nanodiamond via Surrounding Refractive Index Modification. Sci. Rep. 5, 11179 (2015). PubMed PMC

Danilenko V. V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46, 595–599 (2004).

Eidelman E. D. et al.. A stable suspension of single ultrananocrystalline diamond particles. Diam. Relat. Mater. 14, 1765–1769 (2005).

Williams O. A. et al.. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano 4, 4824–4830 (2010). PubMed

Aleksenskiy A. E., Eydelman E. D. & Vul’ A. Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 3, 68–74 (2011).

Baidakova M. V. In Detonation Nanodiamonds: Science and Applications (eds Vul A. & Shenderova O.) (Pan Stanford, 2014).

Mermoux M., Crisci A., Petit T., Girard H. A. & Arnault J.-C. Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014).

Mochalin V., Osswald S. & Gogotsi Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chem. Mater. 21, 273–279 (2009).

Wang C., Kurtsiefer C., Weinfurter H. & Burchard B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B At. Mol. Opt. Phys. 39, 37–41 (2006).

Dolmatov V. Y. et al.. A study of defects and impurities in doped detonation nanodiamonds by EPR, Raman scattering, and XRD methods. J. Superhard Mater. 38, 219–229 (2016).

Pichot V. et al.. High nitrogen doping of detonation nanodiamonds. J. Phys. Chem. C 114, 10082–10087 (2010).

Heyer S. et al.. Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano 8, 5757–5764 (2014). PubMed

Raty J.-Y., Galli G., Bostedt C., van Buuren T. & Terminello L. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds. Phys. Rev. Lett. 90, 37401 (2003). PubMed

Kůsová K. et al.. Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals. Adv. Mater. Interfaces 1, 1300042 (2014).

Bolker A., Saguy C., Tordjman M. & Kalish R. Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites. Phys. Rev. B 88, 035442 (2013).

Pichot V., Risse B., Schnell F., Mory J. & Spitzer D. Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 3, 2159 (2013). PubMed PMC

Mchedlov-Petrossyan N. O., Kamneva N. N., Marynin A. I., Kryshtal A. P. & Ōsawa E. Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media. Phys Chem Chem Phys 17, 16186–16203 (2015). PubMed

Etzold B. J. M. et al.. Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond. Chem. Mater. 26, 3479–3484 (2014).

Osswald S., Yushin G., Mochalin V., Kucheyev S. O. & Gogotsi Y. Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 128, 11635–11642 (2006). PubMed

Pichot V. et al.. An efficient purification method for detonation nanodiamonds. Diam. Relat. Mater. 17, 13–22 (2008).

Wolcott A. et al.. Surface Structure of Aerobically Oxidized Diamond Nanocrystals. J. Phys. Chem. C 118, 26695–26702 (2014). PubMed PMC

Gaebel T. et al.. Size-reduction of nanodiamonds via air oxidation. Diam. Relat. Mater. 21, 28–32 (2012).

Rehor I. & Cigler P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 46, 21–24 (2014).

Stehlik S., Miliaieva D., Varga M., Kromka A. & Rezek B. Size decrease of detonation nanodiamonds by air annealing investigated by AFM. MRS Adv. 1, 1067–1073 (2016).

Osawa E., Sasaki S. & Yamanoi R. In Ultrananocrystalline Diamond: Synthesis, Properties and Applications (eds Shenderova O. A. & Gruen D. M.) (William Andrew, 2012).

Shenderova O. A., Zhirnov V. V. & Brenner D. W. Carbon Nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002).

Barnard A. S. & Sternberg M. Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811 (2007).

Stehlik S. et al.. Water interaction with hydrogenated and oxidized detonation nanodiamonds — Microscopic and spectroscopic analyses. Diam. Relat. Mater. 63, 97–102 (2016).

Petit T. et al.. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion. J. Phys. Chem. Lett. 6, 2909–2912 (2015). PubMed

Korobov M. V., Avramenko N. V., Bogachev A. G., Rozhkova N. N. & Osawa E. Nanophase of Water in Nano-Diamond Gel. J. Phys. Chem. C 111, 7330–7334 (2007).

Vul’ A. Y. & Eydelman E. D. In Detonation nanodiamonds: Science and applications (eds Vul’ A. Y. & Shenderova O. A.) (Pan Stanford, 2014).

Korepanov V. I., Witek H., Okajima H., Ōsawa E. & Hamaguchi H. Communication: Three-dimensional model for phonon confinement in small particles: Quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds. J. Chem. Phys. 140, 41107 (2014). PubMed

Iakoubovskii K., Mitsuishi K. & Furuya K. High-resolution electron microscopy of detonation nanodiamond. Nanotechnology 19, 155705 (2008). PubMed

Turner S. et al.. Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond: Microscopy and spectroscopy analysis of pristine, nitrogen containing DND. Phys. Status Solidi A 210, 1976–1984 (2013).

Yoshikawa M. et al.. Raman scattering from nanometer-sized diamond. Appl. Phys. Lett. 67, 694–696 (1995).

Orwa J. O., Nugent K. W., Jamieson D. N. & Prawer S. Raman investigation of damage caused by deep ion implantation in diamond. Phys. Rev. B 62, 5461 (2000).

Zousman B. & Levinson O. In Nanodiamond (ed. Williams O. A.) (RSC Nanoscience & Nanotechnology, 2014).

Osswald S., Havel M., Mochalin V., Yushin G. & Gogotsi Y. Increase of nanodiamond crystal size by selective oxidation. Diam. Relat. Mater. 17, 1122–1126 (2008).

Ferrari A. C. & Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 362, 2477–2512 (2004). PubMed

Kamoi S., Kim J.-G., Hasuike N., Kisoda K. & Harima H. Non-catalytic direct growth of nanographene on MgO substrates. Jpn. J. Appl. Phys. 53, 05FD06 (2014).

Prawer S. et al.. The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332, 93–97 (2000).

Pichot V., Comet M., Risse B. & Spitzer D. Detonation of nanosized explosive: New mechanistic model for nanodiamond formation. Diam. Relat. Mater. 54, 59–63 (2015).

Čermák J. et al.. Microscopic Electrical Conductivity of Nanodiamonds after Thermal and Plasma Treatments. MRS Adv. 1, 1105–1111 (2016).

Chu C. J., Pan C., Margrave J. L. & Hauge R. H. F2, H2O and O2 etching rates of diamond and the effects of F2, HF and H2O on the molecular O2 etching of (110) diamond. Diam. Relat. Mater. 4, 1317–1324 (1995).

Meyer J. C. et al.. Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Phys. Rev. Lett. 108, 196102 (2012). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...