Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement

. 2017 Jul 25 ; 7 (1) : 6469. [epub] 20170725

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28743965
Odkazy

PubMed 28743965
PubMed Central PMC5526891
DOI 10.1038/s41598-017-06923-4
PII: 10.1038/s41598-017-06923-4
Knihovny.cz E-zdroje

In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.

Zobrazit více v PubMed

Hirano M, et al. Insights from review and analysis of the Fukushima Dai-ichi accident. J. Nucl. Sci. Technol. 2012;49:1–17. doi: 10.1080/18811248.2011.636538. DOI

Was, G. S. Fundamentals Of Radiation Materials Science: Metals And Alloys. (Springer, 2007).

Högberg L. Root causes and impacts of severe accidents at large nuclear power plants. Ambio. 2013;42:267–284. doi: 10.1007/s13280-013-0382-x. PubMed DOI PMC

Puls MP. Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 2009;393:350–367. doi: 10.1016/j.jnucmat.2009.06.022. DOI

Jin D, et al. A study of the zirconium alloy protection by Cr3C2–NiCr coating for nuclear reactor application. Surf. Coat. Technol. 2016;287:55–60. doi: 10.1016/j.surfcoat.2015.12.088. DOI

Zhong W, et al. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions. J. Nucl. Mater. 2016;470:327–338. doi: 10.1016/j.jnucmat.2015.11.037. DOI

Steinbrück M, Vér N, Große M. Oxidation of advanced zirconium cladding alloys in steam at temperatures in the range of 600–1200 °C. Oxid. Met. 2011;76:215–232. doi: 10.1007/s11085-011-9249-3. DOI

Beaumont JS, Mellor MP, Villa M, Joyce MJ. High-intensity power-resolved radiation imaging of an operational nuclear reactor. Nat. Commun. 2015;6:8592. doi: 10.1038/ncomms9592. PubMed DOI PMC

Banerjee D, et al. Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 2016;7:11831. doi: 10.1038/ncomms11831. PubMed DOI PMC

Hutchinson B, Lehtinen B. A theory of the resistance of Zircaloy to uniform corrosion. J. Nucl. Mater. 1994;217:243–249. doi: 10.1016/0022-3115(94)90373-5. DOI

Rudling P, Wikmark G. A unified model of Zircaloy BWR corrosion and hydriding. J. Nucl. Mater. 1999;265:44–59. doi: 10.1016/S0022-3115(98)00613-8. DOI

Motta AT, Couet A, Comstock RJ. Corrosion of zirconium alloys used for nuclear fuel cladding. Annu. Rev. Mater. Res. 2015;45:311–343. doi: 10.1146/annurev-matsci-070214-020951. DOI

Likhanskii, V. V., Evdokimov, I. A. Review of theoretical conceptions on regimes of oxidation and hydrogen pickup in Zr-alloys. 7. International conference on WWER fuel performance, modelling and experimental support; Albena (Bulgaria); 17–21 Sep 2007 http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/39/079/39079731.pdf (2008).

Billone, M., Yan, Y., Burtseva, T. & Daum, R. Cladding Embrittlement During Postulated Loss-of-Coolant Accidents (NUREG/CR-6967). https://www.nrc.gov/docs/ML0821/ML082130389.pdf (2008).

Fendrych F, et al. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D: Appl. Phys. 2010;43:374018–374022. doi: 10.1088/0022-3727/43/37/374018. DOI

Kratochvílová I, et al. Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes. J. Mater. Process. Technol. 2014;214:2600–2605. doi: 10.1016/j.jmatprotec.2014.05.009. DOI

Ashcheulov P, et al. Thin nanocrystalline diamond films protecting zirconium alloys surfaces: from technology to layer analysis and application in nuclear facilities. Appl. Surf. Sci. 2015;359:621–628. doi: 10.1016/j.apsusc.2015.10.117. DOI

Škoda, R., Škarohlíd, J., Kratochvílová, I., Taylor, A., Fendrych, F. Czech Technical University in Prague Faculty of Mechanical Engineering, Institute of Physics AS CR. Layer protecting the surface of zirconium alloys used in nuclear reactors. Czech patent 305059 (2015).

Karkin AE, et al. Neutron irradiation effects in chemical-vapor-deposited diamond. Physical Review B. 2008;78:033204–0033207. doi: 10.1103/PhysRevB.78.033204. DOI

Vance ER. X-ray study of neutron irradiated diamonds. J. Phys. C: Solid St. Phys. 1971;4:257–262. doi: 10.1088/0022-3719/4/3/001. DOI

Standard test method for corrosion testing of products of zirconium, hafnium, and their alloys in water at 680 °f (360 °C) or in steam at 750 °f (400 °C), ASTM G2/G2M-06 e1, https://www.astm.org/Standards/G2.htm (201) (2011).

Chen Y, Urquidi-Macdonald M, Macdonald DD. The electrochemistry of zirconium in aqueous solutions at elevated temperatures and pressures. J. Nucl. Mater. 2006;348:133–147. doi: 10.1016/j.jnucmat.2005.09.014. DOI

Krausová A, et al. In-situ electroschemical study of Zr1Nb alloy corrosion in high temperature Li+ containing water. J. Nucl. Mater. 2015;467:302–310. doi: 10.1016/j.jnucmat.2015.10.005. DOI

Ferreira NG, Silva LLG, Corat EJ, Trava-Airoldi VJ, Iha K. Electrochemical characterization on semiconductors p-type CVD diamond electrodes. Braz. J. Phys. 1999;29:760–763. doi: 10.1590/S0103-97331999000400030. DOI

Benninghoven, A., Rüdenauer, F. G. & Werner, H. W. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends. (John Wiley, 1987).

Meisterjahn P, Hoppe HW, Schultze JW. Electrochemical and XPS measurements on thin oxide films on zirconium. J. Electroanal. Chem. 1987;217:159–185. doi: 10.1016/0022-0728(87)85072-6. DOI

Williams OA, et al. High young’s modulus in ultra thin nanocrystalline diamond. Chem. Phys. Lett. 2010;495:84–89. doi: 10.1016/j.cplett.2010.06.054. DOI

Chakraborty S, et al. Leakage current characteristics and the energy band diagram of Al/ZrO2/Si0.3Ge0.7 hetero-MIS structures. Semicond. Sci. Tech. 2006;21:467–472. doi: 10.1088/0268-1242/21/4/009. DOI

Sayan S, et al. Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study. Phys Status Solidi B. 2004;241:2246–2252. doi: 10.1002/pssb.200404945. DOI

Schlaf R, Murata H, Kafafi ZH. Work function measurements on indium tin oxide films. J. Electron Spectrosc. 2001;120:149–154. doi: 10.1016/S0368-2048(01)00310-3. DOI

Goodall R, Clyne TW. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 2006;54:5489–5499. doi: 10.1016/j.actamat.2006.07.020. DOI

Ctvrtlik R, Al-Haik MS, Kulikovsky V. Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. J. Mater. Sci. 2015;50:1553–1564. doi: 10.1007/s10853-014-8715-0. DOI

Oliver WC. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Stehlik S, et al. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Scientific Rep. 2016;6:38419. doi: 10.1038/srep38419. PubMed DOI PMC

Ferrari AC, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B. 2001;64:754141–754413. doi: 10.1103/PhysRevB.64.075414. DOI

Gary, S. W. Fundamentals Of Radiation Materials Science: Metals And Alloys (Springer, 2007).

Jonscher AK. Physical basis of dielectric loss. Nature. 1975;253:717–719. doi: 10.1038/253717a0. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...