Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000760
Ministry of Education, Youth and Sport
SGS19/190/OHK4/3T/14. KAD
Grant Agency of the Czech Technical University
CZ.02.1.01 / 0.0 / 0.0 / 16_019 / 0000778
Centre of Advanced Applied Natural Sciences
PubMed
34771840
PubMed Central
PMC8585298
DOI
10.3390/ma14216315
PII: ma14216315
Knihovny.cz E-zdroje
- Klíčová slova
- ZIRLO, chemical vapor deposition, diamond coating, nuclear fuel rods corrosion, surface electrochemistry,
- Publikační typ
- časopisecké články MeSH
If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp2 "soft" carbon phase to protect Zr alloy fuel rods (ZIRLO®) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO® (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp2 "soft" carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors.
Zobrazit více v PubMed
Rudling P., Adamson R.B. Performance and inspection of zirconium alloy fuel bundle components in light water reactors (LWRs) In: Murty K.L., editor. Materials’ Ageing and Degradation in Light Water Reactors: Mechanisms and Management. Woodhead Publ Ltd.; Cambridge, UK: 2013. pp. 246–283. DOI
Allen T.R., Konings R.J.M., Motta A.T. Comprehensive Nuclear Materials. Elsevier Science Bv; Amsterdam, The Netherlands: 2012. Corrosion of Zirconium Alloys; pp. 49–68.
Motta A.T., Couet A., Comstock R.J. Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding. In: Clarke D.R., editor. Annual Review of Materials Research. Vol. 45. Annual Reviews; San Mateo, CA, USA: 2015. pp. 311–343.
Högberg L. Root causes and impacts of severe accidents at large nuclear power plants. Ambio. 2015;42:267–284. doi: 10.1007/s13280-013-0382-x. PubMed DOI PMC
Avincola V.A., Grosse M., Stegmaier U., Steinbrueck M., Seifert H.J. Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application. Nucl. Eng. Des. 2015;295:468–478. doi: 10.1016/j.nucengdes.2015.10.002. DOI
Cox B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J. Nucl. Mater. 2005;336:331–368. doi: 10.1016/j.jnucmat.2004.09.029. DOI
Saji G. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident. Nucl. Eng. Des. 2016;307:64–76. doi: 10.1016/j.nucengdes.2016.01.039. DOI
Fromhold A.T. Parabolic oxidation of metals in homogeneous electric-fields. J. Phys. Chem. Solids. 1972;33:95–120. doi: 10.1016/S0022-3697(72)80058-1. DOI
Tang C.C., Stueber M., Seifert H.J., Steinbrueck M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros. Rev. 2017;35:141–165. doi: 10.1515/corrrev-2017-0010. DOI
Ni N., Lozano-Perez S., Sykes J.M., Smith G.D.W., Grovenor C.R.M. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLOTM alloys during corrosion in high temperature pressurised water. Corros. Sci. 2011;53:4073–4083. doi: 10.1016/j.corsci.2011.08.013. DOI
Bell B.D.C., Murphy S.T., Burr P.A., Comstock R.J., Partezana J.M., Grimes R.W., Wenman M.R. The influence of alloying elements on the corrosion of Zr alloys. Corros. Sci. 2016;105:36–43. doi: 10.1016/j.corsci.2015.12.022. DOI
Yuan G.H., Cao G.Q., Yue Q., Yang L., Yun Y.F., Shao G.S., Hu J.H. Formation and fine-structures of nano-precipitates in ZIRLO. J. Alloys Compd. 2016;687:451–457. doi: 10.1016/j.jallcom.2016.06.131. DOI
Chen L.Y., Li J.X., Zhang Y., Zhang L.C., Lu W.J., Wang L.Q., Zhang L.F., Zhang D. Zr-Sn-Nb-Fe-Si-O alloy for fuel cladding candidate: Processing, microstructure, corrosion resistance and tensile behavior. Corros. Sci. 2015;100:332–340. doi: 10.1016/j.corsci.2015.08.005. DOI
Couet A., Motta A.T., Ambard A. The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys. Corros. Sci. 2015;100:73–84. doi: 10.1016/j.corsci.2015.07.003. DOI
Ensor B., Lucente A.M., Frederick M.J., Sutliff J., Motta A.T. The role of hydrogen in zirconium alloy corrosion. J. Nucl. Mater. 2017;496:301–312. doi: 10.1016/j.jnucmat.2017.08.046. DOI
Choudhry K.I., Mahboubi S., Botton G.A., Kish J.R., Svishchev I.M. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on Alloy 800H and stainless steel 316. Corros. Sci. 2015;100:222–230. doi: 10.1016/j.corsci.2015.07.035. DOI
Khatamian D. Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry. J. Alloys Compd. 1999;293:893–899. doi: 10.1016/S0925-8388(99)00388-6. DOI
Kratochvilova I., Skoda R., Skarohlid J., Ashcheulov P., Jager A., Racek J., Taylor A., Shao L. Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel rods. J. Mater. Process. Technol. 2014;214:2600–2605. doi: 10.1016/j.jmatprotec.2014.05.009. DOI
Skarohlid J., Ashcheulov P., Skoda R., Taylor A., Ctvrtlik R., Tomastik J., Fendrych F., Kopecek J., Chab V., Cichon S., et al. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement. Sci. Rep. 2017;7:14. doi: 10.1038/s41598-017-06923-4. PubMed DOI PMC
Ashcheulov P., Skoda R., Skarohlid J., Taylor A., Fekete L., Fendrych F., Vega R., Shao L., Kalvoda L., Vratislav S., et al. Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities. Appl. Surf. Sci. 2015;359:621–628. doi: 10.1016/j.apsusc.2015.10.117. DOI
Kratochvilova I., Ashcheulov P., Skarohlid J., Skoda R., Kopecek J., Sajdl P., Macak J., Lajcinova M., Novakova A., Neethling J., et al. Zr alloy protection against high-temperature oxidation: Coating by a double-layered structure with active and passive functional properties. Corros. Sci. 2020;163:11. doi: 10.1016/j.corsci.2019.108270. DOI
Peng D.Q., Bai X.D., Chen B.S. Corrosion behavior of carbon implanted ZIRLO alloy in 1 M H2SO4. J. Mater. Sci. 2005;40:1169–1175. doi: 10.1007/s10853-005-6934-0. DOI
Sebera J., Nespurek S., Kratochvilova I., Zalis S., Chaidogiannos G., Glezos N. Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: Experiment and quantum chemical calculations. Eur. Phys. J. B. 2009;72:385–395. doi: 10.1140/epjb/e2009-00368-y. DOI
Škoda R., Škarohlíd J., Kratochvílová I., Taylor A. Fendrych Nuclear Reactor Having a Layer Protecting the Surface of Zirconium Alloys and Nuclear Reactor Comprising Same. 10916352. U.S. patent. 2021 February 9;
Fendrych F., Taylor A., Peksa L., Kratochvilova I., Vlcek J., Rezacova V., Petrak V., Kluiber Z., Fekete L., Liehr M., et al. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D Appl. Phys. 2010;43:374018. doi: 10.1088/0022-3727/43/37/374018. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Für Krist. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Tamor M.A., Wu C.H., Carter R.O., Lindsay N.E. Pendant benzene in hydrogenated diamond-like carbon. Appl. Phys. Lett. 1989;55:1388–1390. doi: 10.1063/1.101603. DOI
Mosinska L., Popielarski P., Fabisiak K., Dychalska A. Effects of hydrogen termination of CVD diamond layers. Opt. Mater. 2020;101:109676. doi: 10.1016/j.optmat.2020.109676. DOI
Marchon B., Gui J., Grannen K., Rauch G.C., Ager J.W., Silva S.R.P., Robertson J. Photoluminescence and Raman spectroscopy in hydrogenated carbon films. IEEE Trans. Magn. 1997;33:3148–3150. doi: 10.1109/20.617873. DOI
Efaw C.M., Vandegrift J.L., Reynolds M., McMurdie S., Jaques B.J., Hu H.Q., Xiong H., Hurley M.F. Characterization of zirconium oxides part I: Raman mapping and spectral feature analysis. Nucl. Mater. Energy. 2019;21:11. doi: 10.1016/j.nme.2019.100707. DOI
Jonscher A.K. A new understanding of the dielectric-relaxation of solids. J. Mater. Sci. 1981;16:2037–2060. doi: 10.1007/BF00542364. DOI
Krausova A., Macak J., Sajdl P., Novotny R., Renciukova V., Vrtilkova V. In-situ electrochemical study of Zr1nb alloy corrosion in high temperature Li+ containing water. J. Nucl. Mater. 2015;467:302–310. doi: 10.1016/j.jnucmat.2015.10.005. DOI
Renciukova V., Macak J., Sajdl P., Novotny R., Krausova A. Corrosion of zirconium alloys demonstrated by using impedance spectroscopy. J. Nucl. Mater. 2018;510:312–321. doi: 10.1016/j.jnucmat.2018.08.005. DOI
Kumar M.K.P., Laxmeesha P.M., Ray S., Srivastava C. Enhancement in the corrosion resistance of nanocrystalline aluminium coatings by incorporation of graphene oxide. Appl. Surf. Sci. 2020;533:8. doi: 10.1016/j.apsusc.2020.147512. DOI
Deo Y., Guha S., Sarkar K., Mohanta P., Pradhan D., Mondal A. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties. Appl. Surf. Sci. 2020;515:12. doi: 10.1016/j.apsusc.2020.146078. DOI
Perevalov T.V., Shaposhnikov A.V., Nasyrov K.A., Gritsenko D.V., Gritsenko V.A., Tapilin V.M. Electronic structure of ZrO2 and HfO2. In: Gusev E., editor. Defects in High-K Gate Dielectric Stacks: Nano-Electronic Semiconductor Devices. Volume 220. Springer; Dordrecht, The Netherlands: 2006. pp. 423–434.
Rebak R.B., Li Y.-P., Kim Y.-J. Review on electrochemical corrosion of zirconium alloys in high temperature water; Proceedings of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems; Virginia Beach, VA, USA. 23–27 August 2009; pp. 1400–1406.
Landolt D. Corrosion and Surface Chemistry of Metals. Taylor & Francis Group; New York, NY, USA: 2007. DOI
Moya J.S., Diaz M., Bartolome J.F., Roman E., Sacedon J.L., Izquierdo J. Zirconium oxide film formation on zircaloy by water corrosion. Acta Mater. 2000;48:4749–4754. doi: 10.1016/S1359-6454(00)00267-6. DOI