Molecular Characterization of Cronobacter sakazakii Strains Isolated from Powdered Milk

. 2020 Dec 23 ; 10 (1) : . [epub] 20201223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33374633

Grantová podpora
191450 4R, 195420/EF Universidad del Bío-Bio
991100531/39 Research Support Foundation, Vaduz

Cronobacter spp. are opportunistic pathogens of the Enterobacteriaceae family. The organism causes infections in all age groups, but the most serious cases occur in outbreaks related to neonates with meningitis and necrotizing enterocolitis. The objective was to determine the in silico and in vitro putative virulence factors of six Cronobacter sakazakii strains isolated from powdered milk (PM) in the Czech Republic. Strains were identified by MALDI-TOF MS and whole-genome sequencing (WGS). Virulence and resistance genes were detected with the Ridom SeqSphere+ software task template and the Comprehensive Antibiotic Resistance Database (CARD) platform. Adherence and invasion ability were performed using the mouse neuroblastoma (N1E-115 ATCCCRL-2263) cell line. The CRISPR-Cas system was searched with CRISPRCasFinder. Core genome MLST identified four different sequence types (ST1, ST145, ST245, and ST297) in six isolates. Strains 13755-1B and 1847 were able to adhere in 2.2 and 3.2 × 106 CFU/mL, while 0.00073% invasion frequency was detected only in strain 1847. Both strains 13755-1B and 1847 were positive for three (50.0%) and four virulence genes, respectively. The cpa gene was not detected. Twenty-eight genes were detected by WGS and grouped as flagellar or outer membrane proteins, chemotaxis, hemolysins, and invasion, plasminogen activator, colonization, transcriptional regulator, and survival in macrophages. The colistin-resistance-encoding mcr-9.1 and cephalothin-resis-encoding blaCSA genes and IncFII(pECLA) and IncFIB(pCTU3) plasmids were detected. All strains exhibited CRISPR matrices and four of them two type I-E and I-F matrices. Combined molecular methodologies improve Cronobacter spp. decision-making for health authorities to protect the population.

Zobrazit více v PubMed

Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov.and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov.and Cronobacter genomospecies 1. BMC Evol. Biol. 2007;7:64–74. PubMed PMC

Iversen C., Mullane N., Mc Cardell B., Tall B., Lehner A., Fanning S., Stephan R., Joosten H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov.comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov.subsp. dublinensis subsp. nov., C. dublinensis sp. nov.subsp. lausannensis subsp. nov., and C. dublinensis sp. nov.subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008;58:1442–1447. PubMed

Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M., Forsythe S. Cronobacter condimenti sp. Nov., isolated from spiced meat, and Cronobacter universalis sp. Nov., a species designation for Cronobacter sp. Geneomoespecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol. 2012;62:1277–1283. doi: 10.1099/ijs.0.032292-0. PubMed DOI

Holý O., Petrželová J., Hanulík V., Chromá M., Matoušková I., Forsythe S. Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc University Hospital (Czech Republic) Epidemiol. Mikrobiol. Imunol. 2014;63:69–72. PubMed

Holý O., Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 2014;86:169–177. doi: 10.1016/j.jhin.2013.09.011. PubMed DOI

Forsythe S.J. Updates on the Cronobacter Genus. Annu. Rev. Food Sci. Technol. 2018;25:23–44. doi: 10.1146/annurev-food-030117-012246. PubMed DOI

Bowen A., Braden C. Invasive Enterobacter sakazakii disease in infants. Emerg. Infect. Dis. 2006;12:1185–1189. doi: 10.3201/eid1208.051509. PubMed DOI PMC

Stoll B.J., Hansen N., Fanaroff A., Lemons J.A. Enterobacter sakazakii is a rare cause of neonatal septicemia or meningitis in VLBW infants. J. Pediatr. 2004;144:821–823. PubMed

Hunter C.J., Bean J.F. Cronobacter: An emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J. Perinatol. 2013;33:581–585. doi: 10.1038/jp.2013.26. PubMed DOI

FAO. WHO . Enterobacter Sakazakii (Cronobacter spp) in Powdered Follow-Up Formulae. Volume 15. WHO Press Publisher; Italy, Rome: 2008. pp. 1–105. (Microbiological Risk Assessment Series).

Baumgartner A., Grand M., Liniger M., Iversen C. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 2009;136:189–192. doi: 10.1016/j.ijfoodmicro.2009.04.009. PubMed DOI

Kalyantanda G., Shumyak L., Archibald L.K. Cronobacter species contamination of powdered infant formula and the implications for neonatal health. Front. Pediatr. 2015;3:56. doi: 10.3389/fped.2015.00056. PubMed DOI PMC

Caubilla-Barron J., Forsythe S. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J. Food Prot. 2007;70:2111–2117. doi: 10.4315/0362-028X-70.9.2111. PubMed DOI

Chap J., Jackson P., Siqueira R., Gaspar N., Quintas C., Park J., Osaili T., Shaker R., Jaradat Z., Hartantyo S., et al. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 2009;136:185–188. doi: 10.1016/j.ijfoodmicro.2009.08.005. PubMed DOI

Siqueira R.F., da Silva N., Junqueira V., Kajsik M., Forsythe S., Pereira J. Screening for Cronobacter species in powdered and reconstituted infant formulas and from equipment used in formula preparation in maternity hospitals. Ann. Nut. Met. 2013;63:62–68. doi: 10.1159/000353137. PubMed DOI

Parra J., Oliveras L., Rodriguez A., Riffo F., Jackson E., Forsythe S. Riesgo por Cronobacter sakazakii en leches en polvo para la nutrición de lactantes. Rev. Chil. Nut. 2015;42:83–89. doi: 10.4067/S0717-75182015000100011. DOI

Parra-Flores J., Maury-Sintjago E., Rodriguez-Fernández A., Acuña S., Cerda F., Aguirre J., Holý O. Microbiological quality of powdered infant formula in Latin America. J. Food. Prot. 2020;83:534–541. doi: 10.4315/0362-028X.JFP-19-399. PubMed DOI

Molloy C., Cagney C., O’Brien S., Iversen C., Fanning S., Duffy G. Surveillance and characterization by Pulsed-Field Gel Electrophoresis of Cronobacter spp in farming and domestic environments, food production animals and retails foods. Int. J. Food Microbiol. 2009;136:198–238. doi: 10.1016/j.ijfoodmicro.2009.07.007. PubMed DOI

Carvalho G., Calarga A., Teodoro J., Queiroz M., Astudillo-Trujillo C., Levy C., Brocchi M., Kabuki D. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res. Int. 2020;137:109643. doi: 10.1016/j.foodres.2020.109643. PubMed DOI

Parra-Flores J., Aguirre J., Juneja V., Jackson E., Cruz A., Silva J., Forsythe S. Virulence and Antibiotic Resistance Profiles of Cronobacter sakazakii and Enterobacter spp. Involved in the Diarrheic Hemorrhagic Outbreak in Mexico. Front. Microbiol. 2018;9:2206. doi: 10.3389/fmicb.2018.02206. PubMed DOI PMC

Fei P., Jiang Y., Yuan X., Yang T., Chen J., Wang Z., Kang H., Forsythe S. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments. Front. Microbiol. 2017;8:316. doi: 10.3389/fmicb.2017.00316. PubMed DOI PMC

Cruz A., Xicohtencatl J., Gonzalez B., Bobadilla M., Eslava C., Rosas I. Virulence traits in Cronobacter species isolated from different sources. Can. J. Microbiol. 2011;7:735–744. doi: 10.1139/w11-063. PubMed DOI

Holý O., Cruz-Cordova A., Xicohtencatl-Cortés J., Hochel I., Parra-Flores J., Petrzelova J., Facevicova K., Forsythe S., Alsonosi A. Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb. Pathog. 2019;127:250–256. doi: 10.1016/j.micpath.2018.12.011. PubMed DOI

Hamby S., Joseph S., Forsythe S., Chuzhanova N. In Silico identification of pathogenic strains of Cronobacter from biochemical data reveals association of inositol fermentation with pathogenicity. BMC Microbiol. 2011;11:204–213. doi: 10.1186/1471-2180-11-204. PubMed DOI PMC

Townsend S., Hurrell E., Forsythe S. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol. 2008;8:64. doi: 10.1186/1471-2180-8-64. PubMed DOI PMC

Franco A., Kothary M., Gopinath G., Jarvis K., Grim C., Hu L., Datta A., McCardell B.A., Tall B.D. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect. Immun. 2011;79:1578–1587. doi: 10.1128/IAI.01165-10. PubMed DOI PMC

Cruz-Córdova A., Rocha-Ramírez L., Ochoa S., Gónzalez-Pedrajo B., Espinosa N., Eslava C., Hernández-Chiñas U., Mendoza-Hernández G., Rodríguez-Leviz A., Valencia-Mayoral P., et al. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes. PLoS ONE. 2012;7:e52091. doi: 10.1371/journal.pone.0052091. PubMed DOI PMC

Kim K., Kim K., Choi J., Lim-Jeong A., Lee J., Hwang S., Ryu S. Outer Membrane Proteins A (OmpA) and X (OmpX) Are Essential for Basolateral Invasion of Cronobacter sakazakii. Appl. Environ. Microbiol. 2010;76:5188–5198. doi: 10.1128/AEM.02498-09. PubMed DOI PMC

Ogrodzki P., Forsythe S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genom. 2015;16:758. doi: 10.1186/s12864-015-1960-z. PubMed DOI PMC

Masood N., Moore K., Farbos A., Hariri S., Block C., Paszkiewicz K., Dickins B., McNally A., Forsythe S. Draft Genome Sequence of a Meningitic Isolate of Cronobacter sakazakii Clonal Complex 4, Strain 8399. Genome Announc. 2013;1:e00833-13. doi: 10.1128/genomeA.00833-13. PubMed DOI PMC

Ogrodzki P., Forsythe S.J. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR-cas Array and Capsular Profiling. Front. Microbiol. 2017;8:1875. doi: 10.3389/fmicb.2017.01875. PubMed DOI PMC

Jolany vangah S., Katalani C., Boone H., Abbas Hajizade A., Ahmadian G. CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biol. Proced. Online. 2020;22:22. doi: 10.1186/s12575-020-00135-3. PubMed DOI PMC

Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., Forsythe S. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance, which do not correlate with biotypes. BMC Microbiol. 2009;9:223. doi: 10.1186/1471-2180-9-223. PubMed DOI PMC

Forsythe S.J., Dickins B., Jolley K.A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genom. 2014;15:1121. doi: 10.1186/1471-2164-15-1121. PubMed DOI PMC

Grad Y., Lipsitch M. Epidemiologic data and pathogen genome sequences: A powerful synergy for public health. Genome Biol. 2014;15:538. doi: 10.1186/s13059-014-0538-4. PubMed DOI PMC

Iversen C., Forsythe S.J. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 2004;21:771–776. doi: 10.1016/j.fm.2004.01.009. DOI

Lepuschitz S., Sorschag S., Springer B., Allerberger F., Ruppitsch W. Draft genome sequence of carbapenemase-producing Serratia marcescens isolated from a patient with chronic obstructive pulmonary disease. Genome Announc. 2017;5:e01288-17. doi: 10.1128/genomeA.01288-17. PubMed DOI PMC

Lepuschitz S., Ruppitsch W., Pekard-Amenitsch S., Forsythe S.J., Cormican M., Mach R.L., Piérard D., Allerberger F., the EUCRONI Study Group Multicenter Study of Cronobacter sakazakii Infections in Humans, Europe, 2017. Emerg. Infect. Dis. 2019;25:515–522. doi: 10.3201/eid2503.181652. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S., Pham S., Prjibelski A., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Ruppitsch W., Pietzka A., Prior K., Bletz S., Fernandez H.L., Allerberger F., Harmsen D., Mellmann A. Defining and evaluating a core genome MLST scheme for whole genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015;53:2869–2876. doi: 10.1128/JCM.01193-15. PubMed DOI PMC

Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K., Lago B., Dave B., Pereira S., Sharma A., et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC

Carattoli A., Zankari E., García-Fernández A., Voldby-Larsen M., Lund O., Villa L., Møller-Aarestrup F., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Couvin D., Bernheim A., Toffano-Nioche C., Touchon M., Michalik J., Néron B., Rocha E., Vergnaud G., Gautheret D., Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:246–251. doi: 10.1093/nar/gky425. PubMed DOI PMC

Ge R., Mai G., Wang P., Zhou M., Luo Y., Cai Y., Zhou F. CRISPRdigger: Detecting CRISPRs with better direct repeat annotations. Sci. Rep. 2016;6:32942. doi: 10.1038/srep32942. PubMed DOI PMC

Joseph S., Forsythe S. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Food Microbiol. 2012;3:397. doi: 10.3389/fmicb.2012.00397. PubMed DOI PMC

Dugan K. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe. 2016;19:599–610. PubMed

Hunter C.J., Singamsetty V.K., Chokshi N.K., Boyle P., Camerini V., Grishin A.V., Upperman J.S., Ford H.R., Prasadarao N.V. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect. Dis. 2008;198:586–593. doi: 10.1086/590186. PubMed DOI PMC

Mange J.P., Stephan R., Borel L., Wild P., Kim K.S., Pospischil A., Lenher A. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol. 2006;6:58–68. doi: 10.1186/1471-2180-6-58. PubMed DOI PMC

Townsend S., Hurrell E., Gonzalez-Gomez I., Lowe J., Frye J., Forsythe S., Badger J. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology. 2007;153:3538–3547. doi: 10.1099/mic.0.2007/009316-0. PubMed DOI

Ye Y., Li H., Ling N., Han Y., Wu Q., Xu X., Jiao R., Gao J. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. Int. J. Food Microbiol. 2016;217:182–188. doi: 10.1016/j.ijfoodmicro.2015.08.025. PubMed DOI

Quintero-Villegas M., Wittke A., Hutkins R. Adherence Inhibition of Cronobacter sakazakii to Intestinal Epithelial Cells by Lactoferrin. Curr. Microbiol. 2014;69:574–579. doi: 10.1007/s00284-014-0623-7. PubMed DOI

Alsonosi A., Holý O., Forsythe S. Characterization of the pathogenicity of clinical Cronobacter malonaticus strains based on the tissue culture investigations. Antonie Leeuwenhoek. 2019;112:435–450. doi: 10.1007/s10482-018-1178-6. PubMed DOI

Wu H., Andrew H.-J., Wang A., Jennings M. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008;12:1–9. doi: 10.1016/j.cbpa.2008.01.023. PubMed DOI

Papadopoulos D., Schneider D., Meier-Eiss J., Arber W., Lenski R., Blot M. Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA. 1999;96:3807–3812. doi: 10.1073/pnas.96.7.3807. PubMed DOI PMC

Nair M.K.M., Venkitanarayanan K. Role of bacterial OmpA and host citoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr. Res. 2007;62:664–669. doi: 10.1203/PDR.0b013e3181587864. PubMed DOI

Jang H., Chase H.R., Gangiredla J., Grim C.J., Patel I.R., Kothary M.H., Jackson S., Mammel M.K., Carter L., Negrete F., et al. Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Front. Microbiol. 2020;11:561204. doi: 10.3389/fmicb.2020.561204. PubMed DOI PMC

Baida G.E., Kuzmin N.P. Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta. 1996;1284:22–124. doi: 10.1016/S0005-2736(96)00168-X. PubMed DOI

Chen Y.C., Chang M.C., Chuang Y.C., Jeang C.L. Characterization and virulence of hemolysin III from Vibrio vulnificus. Curr. Microbiol. 2004;49:175–179. doi: 10.1007/s00284-004-4288-5. PubMed DOI

Himelright I., Harris E., Lorch V., Anderson M. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. J. Am. Med. Assoc. 2002;287:2204–2205. PubMed

Abreu A., Bueris V., Porangaba T., Sircili M., Navarro-Garcia F., Elias W. Autotransporter Protein-Encoding Genes of Diarrheagenic Escherichia coli Are Found in both Typical and Atypical Enteropathogenic E. coli Strains. Appl. Environ. Microbiol. 2013;79:411–414. doi: 10.1128/AEM.02635-12. PubMed DOI PMC

Proudy I., Bouglé D., Coton E., Coton M., Leclercq R., Vergnaud M. Genotypic characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and sequencing of the fliC gene. J. Appl. Microbiol. 2008;104:26–34. doi: 10.1111/j.1365-2672.2007.03526.x. PubMed DOI

Hoeflinger J.L., Miller M.J. Cronobacter sakazakii ATCC 29544 Autoaggregation requires FliC flagellation, not motility. Front. Microbiol. 2017;8:301. doi: 10.3389/fmicb.2017.00301. PubMed DOI PMC

Aldubyan M., Almami I., Benslimane F., Alsonosi A., Forsythe S. Comparative Outer Membrane Protein Analysis of High and Low-Invasive Strains of Cronobacter malonaticus. Front. Microbiol. 2017;8:2268. doi: 10.3389/fmicb.2017.02268. PubMed DOI PMC

Dingle T., Mulvey G., Armstrong G. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect. Immun. 2011;79:4061–4067. doi: 10.1128/IAI.05305-11. PubMed DOI PMC

Ye Y., Zhang X., Zhang M., Ling N., Zeng H., Gao J., Jiao R., Wu Q., Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J. Dairy Sci. 2017;100:8826–8837. doi: 10.3168/jds.2017-12801. PubMed DOI

Kim K., Jang S., Kim S., Park J., Heu S., Ryu S. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. Int. J. Food Microbiol. 2008;122:196–203. doi: 10.1016/j.ijfoodmicro.2007.11.072. PubMed DOI

Chon J., Song K., Kim S., Hyeon J., Seo K. Isolation and characterization of Cronobacter from desiccated foods in Korea. J. Food Sci. 2012;77:354–358. doi: 10.1111/j.1750-3841.2012.02750.x. PubMed DOI

Parra-Flores J., Arvizu S., Silva J., Fernández E. Two cases of hemorrhagic diarrhea caused by Cronobacter sakazakii in hospitalized nursing infants associated with the consumption of powdered infant formula. J. Food Prot. 2011;74:2177–2181. doi: 10.4315/0362-028X.JFP-11-257. PubMed DOI

Aly M.A., Domig K.J., Kneifel W., Reimhult E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front. Microbiol. 2019;10:1464. doi: 10.3389/fmicb.2019.01464. PubMed DOI PMC

Touze T., Eswaran J., Bokma E., Koronakis E., Hughes C., Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 2004;53:697–706. doi: 10.1111/j.1365-2958.2004.04158.x. PubMed DOI

Kucerova E., Clifton S.W., Xia X.Q., Long F., Porwollik S., Fulton L., Feng D., Wollam A., Shah N., Bhonogiri V., et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE. 2010;5:e9556. doi: 10.1371/journal.pone.0009556. PubMed DOI PMC

El-Sharoud W., O’Brien S., Negredo C., Iversen C., Fanning S., Healy B. Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiol. 2009;9:9. doi: 10.1186/1471-2180-9-24. PubMed DOI PMC

Carroll L., Gaballa A., Guldimann C., Sullivan G., Henderson L., Wiedmann M. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio. 2019;10:e00853-19. doi: 10.1128/mBio.00853-19. PubMed DOI PMC

Kieffer N., Royer G., Decousser J.-W., Bourrel A.-S., Palmieri M., Ortiz De La Rosa J.-M., Jacquier H., Denamur E., Nordmann P., Poirel L. mcr-9, an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin. Antimicrob. Agents Chemother. 2019;63:e00965-19. doi: 10.1128/AAC.00965-19. PubMed DOI PMC

Yuan Y., Li Y., Wang G., Li C., Xiang L., She J., Yang Y., Zhong F., Zhang L. Coproduction of MCR-9 and NDM-1 By Colistin-Resistant Enterobacter hormaechei Isolated from Bloodstream Infection. Infect. Drug Resist. 2019;12:2979–2985. doi: 10.2147/IDR.S217168. PubMed DOI PMC

Cheng Y., Chen Y., Liu Y., Guo Y., Zhou Y., Xiao T., Zhang S., Xu H., Chen Y., Shan T., et al. Identification of novel tetracycline resistance gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and colistin-resistant Empedobacter stercoris. Emerg. Microbes Infect. 2020;9:1843–1852. doi: 10.1080/22221751.2020.1803769. PubMed DOI PMC

Müller A., Hächler H., Stephan R., Lehner A. Presence of AmpC beta-lactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus. Microb. Drug Resist. 2014;20:275–280. doi: 10.1089/mdr.2013.0188. PubMed DOI

Zhou K., Zhou Y., Zhang C., Song J., Cao X., Yu X., Shen P., Xiao Y. Dissemination of a ‘rare’ extended-spectrum β-lactamase gene blaSFO-1 mediated by epidemic clones of carbapenemase-producing Enterobacter hormaechei in China. Int. J. Antimicrob. Agents. 2020;56:106079. doi: 10.1016/j.ijantimicag.2020.106079. PubMed DOI

Eshwar A.K., Tall B.D., Gangiredla J., Gopinath G.R., Patel I.R., Neuhauss S., Stephan R., Lehner A. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp. PLoS ONE. 2016;11:e0158428. doi: 10.1371/journal.pone.0158428. PubMed DOI PMC

Makarova K.S., Koonin E.V. Annotation and Classification of CRISPR-Cas Systems. Methods Mol. Biol. 2015;1311:47–75. PubMed PMC

Ogrodzki P., Forsythe J. CRISPR–cas loci profiling of Cronobacter sakazakii pathovars. Future Microbiol. 2016;11:1507–1519. doi: 10.2217/fmb-2016-0070. PubMed DOI

Zeng H., Li C., He W., Zhang J., Chen M., Lei T., Wu H., Ling N., Cai S., Wang J., et al. Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter dublinensis Genotyping Based on CRISPR Locus Diversity. Front. Microbiol. 2019;10:1989. doi: 10.3389/fmicb.2019.01989. PubMed DOI PMC

Zeng H., Zhang J., Li C., Xie T., Ling N., Wu Q., Ye Y. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci. Rep. 2017;7:40206. doi: 10.1038/srep40206. PubMed DOI PMC

Zeng H., Zhang J., Wu Q., He W., Wu H., Ye Y., Li C., Ling N., Chen M., Wang J., et al. Reconstituting the History of Cronobacter Evolution Driven by Differentiated CRISPR Activity. Appl. Environ. Microbiol. 2018;84:e00267-18. doi: 10.1128/AEM.00267-18. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...