Molecular Characterization of Cronobacter sakazakii Strains Isolated from Powdered Milk
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
191450 4R, 195420/EF
Universidad del Bío-Bio
991100531/39
Research Support Foundation, Vaduz
PubMed
33374633
PubMed Central
PMC7822459
DOI
10.3390/foods10010020
PII: foods10010020
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas, Cronobacter sakazakii, antibiotic resistance genes, powdered milk, virulence, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
Cronobacter spp. are opportunistic pathogens of the Enterobacteriaceae family. The organism causes infections in all age groups, but the most serious cases occur in outbreaks related to neonates with meningitis and necrotizing enterocolitis. The objective was to determine the in silico and in vitro putative virulence factors of six Cronobacter sakazakii strains isolated from powdered milk (PM) in the Czech Republic. Strains were identified by MALDI-TOF MS and whole-genome sequencing (WGS). Virulence and resistance genes were detected with the Ridom SeqSphere+ software task template and the Comprehensive Antibiotic Resistance Database (CARD) platform. Adherence and invasion ability were performed using the mouse neuroblastoma (N1E-115 ATCCCRL-2263) cell line. The CRISPR-Cas system was searched with CRISPRCasFinder. Core genome MLST identified four different sequence types (ST1, ST145, ST245, and ST297) in six isolates. Strains 13755-1B and 1847 were able to adhere in 2.2 and 3.2 × 106 CFU/mL, while 0.00073% invasion frequency was detected only in strain 1847. Both strains 13755-1B and 1847 were positive for three (50.0%) and four virulence genes, respectively. The cpa gene was not detected. Twenty-eight genes were detected by WGS and grouped as flagellar or outer membrane proteins, chemotaxis, hemolysins, and invasion, plasminogen activator, colonization, transcriptional regulator, and survival in macrophages. The colistin-resistance-encoding mcr-9.1 and cephalothin-resis-encoding blaCSA genes and IncFII(pECLA) and IncFIB(pCTU3) plasmids were detected. All strains exhibited CRISPR matrices and four of them two type I-E and I-F matrices. Combined molecular methodologies improve Cronobacter spp. decision-making for health authorities to protect the population.
Adams Hill Keyworth Nottinghamshire NG12 5GY UK
Department of Nutrition and Public Health Universidad del Bío Bío Chillán 3800708 Chile
Department of Public Health Palacký University Olomouc 77515 Olomouc Czech Republic
Zobrazit více v PubMed
Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov.and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov.and Cronobacter genomospecies 1. BMC Evol. Biol. 2007;7:64–74. PubMed PMC
Iversen C., Mullane N., Mc Cardell B., Tall B., Lehner A., Fanning S., Stephan R., Joosten H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov.comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov.subsp. dublinensis subsp. nov., C. dublinensis sp. nov.subsp. lausannensis subsp. nov., and C. dublinensis sp. nov.subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008;58:1442–1447. PubMed
Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M., Forsythe S. Cronobacter condimenti sp. Nov., isolated from spiced meat, and Cronobacter universalis sp. Nov., a species designation for Cronobacter sp. Geneomoespecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol. 2012;62:1277–1283. doi: 10.1099/ijs.0.032292-0. PubMed DOI
Holý O., Petrželová J., Hanulík V., Chromá M., Matoušková I., Forsythe S. Epidemiology of Cronobacter spp. isolates from patients admitted to the Olomouc University Hospital (Czech Republic) Epidemiol. Mikrobiol. Imunol. 2014;63:69–72. PubMed
Holý O., Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J. Hosp. Infect. 2014;86:169–177. doi: 10.1016/j.jhin.2013.09.011. PubMed DOI
Forsythe S.J. Updates on the Cronobacter Genus. Annu. Rev. Food Sci. Technol. 2018;25:23–44. doi: 10.1146/annurev-food-030117-012246. PubMed DOI
Bowen A., Braden C. Invasive Enterobacter sakazakii disease in infants. Emerg. Infect. Dis. 2006;12:1185–1189. doi: 10.3201/eid1208.051509. PubMed DOI PMC
Stoll B.J., Hansen N., Fanaroff A., Lemons J.A. Enterobacter sakazakii is a rare cause of neonatal septicemia or meningitis in VLBW infants. J. Pediatr. 2004;144:821–823. PubMed
Hunter C.J., Bean J.F. Cronobacter: An emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J. Perinatol. 2013;33:581–585. doi: 10.1038/jp.2013.26. PubMed DOI
FAO. WHO . Enterobacter Sakazakii (Cronobacter spp) in Powdered Follow-Up Formulae. Volume 15. WHO Press Publisher; Italy, Rome: 2008. pp. 1–105. (Microbiological Risk Assessment Series).
Baumgartner A., Grand M., Liniger M., Iversen C. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 2009;136:189–192. doi: 10.1016/j.ijfoodmicro.2009.04.009. PubMed DOI
Kalyantanda G., Shumyak L., Archibald L.K. Cronobacter species contamination of powdered infant formula and the implications for neonatal health. Front. Pediatr. 2015;3:56. doi: 10.3389/fped.2015.00056. PubMed DOI PMC
Caubilla-Barron J., Forsythe S. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J. Food Prot. 2007;70:2111–2117. doi: 10.4315/0362-028X-70.9.2111. PubMed DOI
Chap J., Jackson P., Siqueira R., Gaspar N., Quintas C., Park J., Osaili T., Shaker R., Jaradat Z., Hartantyo S., et al. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 2009;136:185–188. doi: 10.1016/j.ijfoodmicro.2009.08.005. PubMed DOI
Siqueira R.F., da Silva N., Junqueira V., Kajsik M., Forsythe S., Pereira J. Screening for Cronobacter species in powdered and reconstituted infant formulas and from equipment used in formula preparation in maternity hospitals. Ann. Nut. Met. 2013;63:62–68. doi: 10.1159/000353137. PubMed DOI
Parra J., Oliveras L., Rodriguez A., Riffo F., Jackson E., Forsythe S. Riesgo por Cronobacter sakazakii en leches en polvo para la nutrición de lactantes. Rev. Chil. Nut. 2015;42:83–89. doi: 10.4067/S0717-75182015000100011. DOI
Parra-Flores J., Maury-Sintjago E., Rodriguez-Fernández A., Acuña S., Cerda F., Aguirre J., Holý O. Microbiological quality of powdered infant formula in Latin America. J. Food. Prot. 2020;83:534–541. doi: 10.4315/0362-028X.JFP-19-399. PubMed DOI
Molloy C., Cagney C., O’Brien S., Iversen C., Fanning S., Duffy G. Surveillance and characterization by Pulsed-Field Gel Electrophoresis of Cronobacter spp in farming and domestic environments, food production animals and retails foods. Int. J. Food Microbiol. 2009;136:198–238. doi: 10.1016/j.ijfoodmicro.2009.07.007. PubMed DOI
Carvalho G., Calarga A., Teodoro J., Queiroz M., Astudillo-Trujillo C., Levy C., Brocchi M., Kabuki D. Isolation, comparison of identification methods and antibiotic resistance of Cronobacter spp. in infant foods. Food Res. Int. 2020;137:109643. doi: 10.1016/j.foodres.2020.109643. PubMed DOI
Parra-Flores J., Aguirre J., Juneja V., Jackson E., Cruz A., Silva J., Forsythe S. Virulence and Antibiotic Resistance Profiles of Cronobacter sakazakii and Enterobacter spp. Involved in the Diarrheic Hemorrhagic Outbreak in Mexico. Front. Microbiol. 2018;9:2206. doi: 10.3389/fmicb.2018.02206. PubMed DOI PMC
Fei P., Jiang Y., Yuan X., Yang T., Chen J., Wang Z., Kang H., Forsythe S. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments. Front. Microbiol. 2017;8:316. doi: 10.3389/fmicb.2017.00316. PubMed DOI PMC
Cruz A., Xicohtencatl J., Gonzalez B., Bobadilla M., Eslava C., Rosas I. Virulence traits in Cronobacter species isolated from different sources. Can. J. Microbiol. 2011;7:735–744. doi: 10.1139/w11-063. PubMed DOI
Holý O., Cruz-Cordova A., Xicohtencatl-Cortés J., Hochel I., Parra-Flores J., Petrzelova J., Facevicova K., Forsythe S., Alsonosi A. Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb. Pathog. 2019;127:250–256. doi: 10.1016/j.micpath.2018.12.011. PubMed DOI
Hamby S., Joseph S., Forsythe S., Chuzhanova N. In Silico identification of pathogenic strains of Cronobacter from biochemical data reveals association of inositol fermentation with pathogenicity. BMC Microbiol. 2011;11:204–213. doi: 10.1186/1471-2180-11-204. PubMed DOI PMC
Townsend S., Hurrell E., Forsythe S. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol. 2008;8:64. doi: 10.1186/1471-2180-8-64. PubMed DOI PMC
Franco A., Kothary M., Gopinath G., Jarvis K., Grim C., Hu L., Datta A., McCardell B.A., Tall B.D. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect. Immun. 2011;79:1578–1587. doi: 10.1128/IAI.01165-10. PubMed DOI PMC
Cruz-Córdova A., Rocha-Ramírez L., Ochoa S., Gónzalez-Pedrajo B., Espinosa N., Eslava C., Hernández-Chiñas U., Mendoza-Hernández G., Rodríguez-Leviz A., Valencia-Mayoral P., et al. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes. PLoS ONE. 2012;7:e52091. doi: 10.1371/journal.pone.0052091. PubMed DOI PMC
Kim K., Kim K., Choi J., Lim-Jeong A., Lee J., Hwang S., Ryu S. Outer Membrane Proteins A (OmpA) and X (OmpX) Are Essential for Basolateral Invasion of Cronobacter sakazakii. Appl. Environ. Microbiol. 2010;76:5188–5198. doi: 10.1128/AEM.02498-09. PubMed DOI PMC
Ogrodzki P., Forsythe S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genom. 2015;16:758. doi: 10.1186/s12864-015-1960-z. PubMed DOI PMC
Masood N., Moore K., Farbos A., Hariri S., Block C., Paszkiewicz K., Dickins B., McNally A., Forsythe S. Draft Genome Sequence of a Meningitic Isolate of Cronobacter sakazakii Clonal Complex 4, Strain 8399. Genome Announc. 2013;1:e00833-13. doi: 10.1128/genomeA.00833-13. PubMed DOI PMC
Ogrodzki P., Forsythe S.J. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR-cas Array and Capsular Profiling. Front. Microbiol. 2017;8:1875. doi: 10.3389/fmicb.2017.01875. PubMed DOI PMC
Jolany vangah S., Katalani C., Boone H., Abbas Hajizade A., Ahmadian G. CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biol. Proced. Online. 2020;22:22. doi: 10.1186/s12575-020-00135-3. PubMed DOI PMC
Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., Forsythe S. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance, which do not correlate with biotypes. BMC Microbiol. 2009;9:223. doi: 10.1186/1471-2180-9-223. PubMed DOI PMC
Forsythe S.J., Dickins B., Jolley K.A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genom. 2014;15:1121. doi: 10.1186/1471-2164-15-1121. PubMed DOI PMC
Grad Y., Lipsitch M. Epidemiologic data and pathogen genome sequences: A powerful synergy for public health. Genome Biol. 2014;15:538. doi: 10.1186/s13059-014-0538-4. PubMed DOI PMC
Iversen C., Forsythe S.J. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 2004;21:771–776. doi: 10.1016/j.fm.2004.01.009. DOI
Lepuschitz S., Sorschag S., Springer B., Allerberger F., Ruppitsch W. Draft genome sequence of carbapenemase-producing Serratia marcescens isolated from a patient with chronic obstructive pulmonary disease. Genome Announc. 2017;5:e01288-17. doi: 10.1128/genomeA.01288-17. PubMed DOI PMC
Lepuschitz S., Ruppitsch W., Pekard-Amenitsch S., Forsythe S.J., Cormican M., Mach R.L., Piérard D., Allerberger F., the EUCRONI Study Group Multicenter Study of Cronobacter sakazakii Infections in Humans, Europe, 2017. Emerg. Infect. Dis. 2019;25:515–522. doi: 10.3201/eid2503.181652. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S., Pham S., Prjibelski A., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Ruppitsch W., Pietzka A., Prior K., Bletz S., Fernandez H.L., Allerberger F., Harmsen D., Mellmann A. Defining and evaluating a core genome MLST scheme for whole genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015;53:2869–2876. doi: 10.1128/JCM.01193-15. PubMed DOI PMC
Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K., Lago B., Dave B., Pereira S., Sharma A., et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC
Carattoli A., Zankari E., García-Fernández A., Voldby-Larsen M., Lund O., Villa L., Møller-Aarestrup F., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Couvin D., Bernheim A., Toffano-Nioche C., Touchon M., Michalik J., Néron B., Rocha E., Vergnaud G., Gautheret D., Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:246–251. doi: 10.1093/nar/gky425. PubMed DOI PMC
Ge R., Mai G., Wang P., Zhou M., Luo Y., Cai Y., Zhou F. CRISPRdigger: Detecting CRISPRs with better direct repeat annotations. Sci. Rep. 2016;6:32942. doi: 10.1038/srep32942. PubMed DOI PMC
Joseph S., Forsythe S. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Food Microbiol. 2012;3:397. doi: 10.3389/fmicb.2012.00397. PubMed DOI PMC
Dugan K. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe. 2016;19:599–610. PubMed
Hunter C.J., Singamsetty V.K., Chokshi N.K., Boyle P., Camerini V., Grishin A.V., Upperman J.S., Ford H.R., Prasadarao N.V. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect. Dis. 2008;198:586–593. doi: 10.1086/590186. PubMed DOI PMC
Mange J.P., Stephan R., Borel L., Wild P., Kim K.S., Pospischil A., Lenher A. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol. 2006;6:58–68. doi: 10.1186/1471-2180-6-58. PubMed DOI PMC
Townsend S., Hurrell E., Gonzalez-Gomez I., Lowe J., Frye J., Forsythe S., Badger J. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology. 2007;153:3538–3547. doi: 10.1099/mic.0.2007/009316-0. PubMed DOI
Ye Y., Li H., Ling N., Han Y., Wu Q., Xu X., Jiao R., Gao J. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. Int. J. Food Microbiol. 2016;217:182–188. doi: 10.1016/j.ijfoodmicro.2015.08.025. PubMed DOI
Quintero-Villegas M., Wittke A., Hutkins R. Adherence Inhibition of Cronobacter sakazakii to Intestinal Epithelial Cells by Lactoferrin. Curr. Microbiol. 2014;69:574–579. doi: 10.1007/s00284-014-0623-7. PubMed DOI
Alsonosi A., Holý O., Forsythe S. Characterization of the pathogenicity of clinical Cronobacter malonaticus strains based on the tissue culture investigations. Antonie Leeuwenhoek. 2019;112:435–450. doi: 10.1007/s10482-018-1178-6. PubMed DOI
Wu H., Andrew H.-J., Wang A., Jennings M. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008;12:1–9. doi: 10.1016/j.cbpa.2008.01.023. PubMed DOI
Papadopoulos D., Schneider D., Meier-Eiss J., Arber W., Lenski R., Blot M. Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. USA. 1999;96:3807–3812. doi: 10.1073/pnas.96.7.3807. PubMed DOI PMC
Nair M.K.M., Venkitanarayanan K. Role of bacterial OmpA and host citoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr. Res. 2007;62:664–669. doi: 10.1203/PDR.0b013e3181587864. PubMed DOI
Jang H., Chase H.R., Gangiredla J., Grim C.J., Patel I.R., Kothary M.H., Jackson S., Mammel M.K., Carter L., Negrete F., et al. Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Front. Microbiol. 2020;11:561204. doi: 10.3389/fmicb.2020.561204. PubMed DOI PMC
Baida G.E., Kuzmin N.P. Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta. 1996;1284:22–124. doi: 10.1016/S0005-2736(96)00168-X. PubMed DOI
Chen Y.C., Chang M.C., Chuang Y.C., Jeang C.L. Characterization and virulence of hemolysin III from Vibrio vulnificus. Curr. Microbiol. 2004;49:175–179. doi: 10.1007/s00284-004-4288-5. PubMed DOI
Himelright I., Harris E., Lorch V., Anderson M. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. J. Am. Med. Assoc. 2002;287:2204–2205. PubMed
Abreu A., Bueris V., Porangaba T., Sircili M., Navarro-Garcia F., Elias W. Autotransporter Protein-Encoding Genes of Diarrheagenic Escherichia coli Are Found in both Typical and Atypical Enteropathogenic E. coli Strains. Appl. Environ. Microbiol. 2013;79:411–414. doi: 10.1128/AEM.02635-12. PubMed DOI PMC
Proudy I., Bouglé D., Coton E., Coton M., Leclercq R., Vergnaud M. Genotypic characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and sequencing of the fliC gene. J. Appl. Microbiol. 2008;104:26–34. doi: 10.1111/j.1365-2672.2007.03526.x. PubMed DOI
Hoeflinger J.L., Miller M.J. Cronobacter sakazakii ATCC 29544 Autoaggregation requires FliC flagellation, not motility. Front. Microbiol. 2017;8:301. doi: 10.3389/fmicb.2017.00301. PubMed DOI PMC
Aldubyan M., Almami I., Benslimane F., Alsonosi A., Forsythe S. Comparative Outer Membrane Protein Analysis of High and Low-Invasive Strains of Cronobacter malonaticus. Front. Microbiol. 2017;8:2268. doi: 10.3389/fmicb.2017.02268. PubMed DOI PMC
Dingle T., Mulvey G., Armstrong G. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect. Immun. 2011;79:4061–4067. doi: 10.1128/IAI.05305-11. PubMed DOI PMC
Ye Y., Zhang X., Zhang M., Ling N., Zeng H., Gao J., Jiao R., Wu Q., Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J. Dairy Sci. 2017;100:8826–8837. doi: 10.3168/jds.2017-12801. PubMed DOI
Kim K., Jang S., Kim S., Park J., Heu S., Ryu S. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. Int. J. Food Microbiol. 2008;122:196–203. doi: 10.1016/j.ijfoodmicro.2007.11.072. PubMed DOI
Chon J., Song K., Kim S., Hyeon J., Seo K. Isolation and characterization of Cronobacter from desiccated foods in Korea. J. Food Sci. 2012;77:354–358. doi: 10.1111/j.1750-3841.2012.02750.x. PubMed DOI
Parra-Flores J., Arvizu S., Silva J., Fernández E. Two cases of hemorrhagic diarrhea caused by Cronobacter sakazakii in hospitalized nursing infants associated with the consumption of powdered infant formula. J. Food Prot. 2011;74:2177–2181. doi: 10.4315/0362-028X.JFP-11-257. PubMed DOI
Aly M.A., Domig K.J., Kneifel W., Reimhult E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front. Microbiol. 2019;10:1464. doi: 10.3389/fmicb.2019.01464. PubMed DOI PMC
Touze T., Eswaran J., Bokma E., Koronakis E., Hughes C., Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 2004;53:697–706. doi: 10.1111/j.1365-2958.2004.04158.x. PubMed DOI
Kucerova E., Clifton S.W., Xia X.Q., Long F., Porwollik S., Fulton L., Feng D., Wollam A., Shah N., Bhonogiri V., et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE. 2010;5:e9556. doi: 10.1371/journal.pone.0009556. PubMed DOI PMC
El-Sharoud W., O’Brien S., Negredo C., Iversen C., Fanning S., Healy B. Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiol. 2009;9:9. doi: 10.1186/1471-2180-9-24. PubMed DOI PMC
Carroll L., Gaballa A., Guldimann C., Sullivan G., Henderson L., Wiedmann M. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio. 2019;10:e00853-19. doi: 10.1128/mBio.00853-19. PubMed DOI PMC
Kieffer N., Royer G., Decousser J.-W., Bourrel A.-S., Palmieri M., Ortiz De La Rosa J.-M., Jacquier H., Denamur E., Nordmann P., Poirel L. mcr-9, an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin. Antimicrob. Agents Chemother. 2019;63:e00965-19. doi: 10.1128/AAC.00965-19. PubMed DOI PMC
Yuan Y., Li Y., Wang G., Li C., Xiang L., She J., Yang Y., Zhong F., Zhang L. Coproduction of MCR-9 and NDM-1 By Colistin-Resistant Enterobacter hormaechei Isolated from Bloodstream Infection. Infect. Drug Resist. 2019;12:2979–2985. doi: 10.2147/IDR.S217168. PubMed DOI PMC
Cheng Y., Chen Y., Liu Y., Guo Y., Zhou Y., Xiao T., Zhang S., Xu H., Chen Y., Shan T., et al. Identification of novel tetracycline resistance gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and colistin-resistant Empedobacter stercoris. Emerg. Microbes Infect. 2020;9:1843–1852. doi: 10.1080/22221751.2020.1803769. PubMed DOI PMC
Müller A., Hächler H., Stephan R., Lehner A. Presence of AmpC beta-lactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus. Microb. Drug Resist. 2014;20:275–280. doi: 10.1089/mdr.2013.0188. PubMed DOI
Zhou K., Zhou Y., Zhang C., Song J., Cao X., Yu X., Shen P., Xiao Y. Dissemination of a ‘rare’ extended-spectrum β-lactamase gene blaSFO-1 mediated by epidemic clones of carbapenemase-producing Enterobacter hormaechei in China. Int. J. Antimicrob. Agents. 2020;56:106079. doi: 10.1016/j.ijantimicag.2020.106079. PubMed DOI
Eshwar A.K., Tall B.D., Gangiredla J., Gopinath G.R., Patel I.R., Neuhauss S., Stephan R., Lehner A. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp. PLoS ONE. 2016;11:e0158428. doi: 10.1371/journal.pone.0158428. PubMed DOI PMC
Makarova K.S., Koonin E.V. Annotation and Classification of CRISPR-Cas Systems. Methods Mol. Biol. 2015;1311:47–75. PubMed PMC
Ogrodzki P., Forsythe J. CRISPR–cas loci profiling of Cronobacter sakazakii pathovars. Future Microbiol. 2016;11:1507–1519. doi: 10.2217/fmb-2016-0070. PubMed DOI
Zeng H., Li C., He W., Zhang J., Chen M., Lei T., Wu H., Ling N., Cai S., Wang J., et al. Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter dublinensis Genotyping Based on CRISPR Locus Diversity. Front. Microbiol. 2019;10:1989. doi: 10.3389/fmicb.2019.01989. PubMed DOI PMC
Zeng H., Zhang J., Li C., Xie T., Ling N., Wu Q., Ye Y. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci. Rep. 2017;7:40206. doi: 10.1038/srep40206. PubMed DOI PMC
Zeng H., Zhang J., Wu Q., He W., Wu H., Ye Y., Li C., Ling N., Chen M., Wang J., et al. Reconstituting the History of Cronobacter Evolution Driven by Differentiated CRISPR Activity. Appl. Environ. Microbiol. 2018;84:e00267-18. doi: 10.1128/AEM.00267-18. PubMed DOI PMC