Drivers of the changing abundance of European birds at two spatial scales

. 2023 Jul 17 ; 378 (1881) : 20220198. [epub] 20230529

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37246375

Detecting biodiversity change and identifying its causes is challenging because biodiversity is multifaceted and temporal data often contain bias. Here, we model temporal change in species' abundance and biomass by using extensive data describing the population sizes and trends of native breeding birds in the United Kingdom (UK) and the European Union (EU). In addition, we explore how species' population trends vary with species' traits. We demonstrate significant change in the bird assemblages of the UK and EU, with substantial reductions in overall bird abundance and losses concentrated in a relatively small number of abundant and smaller sized species. By contrast, rarer and larger birds had generally fared better. Simultaneously, overall avian biomass had increased very slightly in the UK and was stable in the EU, indicating a change in community structure. Abundance trends across species were positively correlated with species' body mass and with trends in climate suitability, and varied with species' abundance, migration strategy and niche associations linked to diet. Our work highlights how changes in biodiversity cannot be captured easily by a single number; care is required when measuring and interpreting biodiversity change given that different metrics can provide very different insights. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.

Zobrazit více v PubMed

United Nations Environment Programme. 2021. Convention on biological diversity. First draft of the post-2020 Global Biodiversity Framework, CBD/WG2020/3/3. See https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf.

Díaz SM, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100. (10.1126/science.aax3100) PubMed DOI

Díaz SM, et al. . 2019. The global assessment report on biodiversity and ecosystem services: summary for policy makers. Bonn, Germany: IPBES Secretariat. (https://www.ipbes.net/global-assessment)

Dasgupta P. 2021. The economics of biodiversity: the Dasgupta review. London, UK: HM Treasury.

Buckland S, Johnston A. 2017. Monitoring the biodiversity of regions: key principles and possible pitfalls. Biol. Conserv. 214, 23-34. (10.1016/j.biocon.2017.07.034) DOI

Buckland S, Yuan Y, Marcon E. 2017. Measuring temporal trends in biodiversity. AStA Adv. Statist. Anal. 101, 461-474. (10.1007/s10182-017-0308-1) DOI

Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089-E6096. (10.1073/pnas.1704949114) PubMed DOI PMC

Isbell F, et al. 2022. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. 21, 94-103. (10.1002/fee.2536) DOI

Dornelas M, Gotelli NJ, Shimadzu H, Moyes F, Magurran AE, McGill BJ. 2019. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847-854. (10.1111/ele.13242) PubMed DOI

Gonzalez A, et al. 2016. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949-1960. (10.1890/15-1759.1) PubMed DOI

Leung B, Hargreaves AL, Greenberg DA, McGill B, Dornelas M, Freeman R. 2020. Clustered versus catastrophic global vertebrate declines. Nature 588, 267-271. (10.1038/s41586-020-2920-6) PubMed DOI

Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R, Brown CD, De Frenne P, Verheyen K, Wipf S. 2013. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19 456-19 459. (10.1073/pnas.1312779110) PubMed DOI PMC

Purvis A, Hector A. 2000. Getting the measure of biodiversity. Nature 405, 212-219. (10.1038/35012221) PubMed DOI

Loreau M, Cardinale BJ, Isbell F, Newbold T, O'Connor MI, de Mazancourt C. 2022. Do not downplay biodiversity loss. Nature 601, E27-E28. (10.1038/s41586-021-04179-7) PubMed DOI

Murali G, de Oliveira Caetano GH, Barki G, Meiri S, Roll U. 2022. Emphasizing declining populations in the Living Planet Report. Nature 601, E20-E24. (10.1038/s41586-021-04165-z) PubMed DOI

Puurtinen M, Elo M, Kotiaho JS. 2022. The Living Planet Index does not measure abundance. Nature 601, E14-E15. (10.1038/s41586-021-03708-8) PubMed DOI

Pereira HM, et al. 2013. Essential biodiversity variables. Science 339, 277-278. (10.1126/science.1229931) PubMed DOI

Kissling WD, et al. 2018. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600-625. (10.1111/brv.12359) PubMed DOI

Bennett PM, Owens IP. 2002. Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford, UK: Oxford University Press.

Gaston KJ, Blackburn TM. 1995. Birds, body size and the threat of extinction. Phil. Trans. R. Soc. Lond. B 347, 205-212. (10.1098/rstb.1995.0022) DOI

Luther DA, Cooper WJ, Jirinec V, Wolfe JD, Rutt CL, Bierregaard Jr RO, Lovejoy TE, Stouffer PC. 2022. Long-term changes in avian biomass and functional diversity within disturbed and undisturbed Amazonian rainforest. Proc. R. Soc. B 289, 20221123. (10.1098/rspb.2022.1123) PubMed DOI PMC

Sullivan MJ, Newson SE, Pearce-Higgins JW. 2015. Using habitat-specific population trends to evaluate the consistency of the effect of species traits on bird population change. Biol. Conserv. 192, 343-352. (10.1016/j.biocon.2015.10.009) DOI

IPBES. 2018. The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia (eds M Rounsevell, M Fischer, A Torre-Marin Rando, A Mader), 892 pp. Bonn, Germany: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

Inger R, Gregory R, Duffy JP, Stott I, Voříšek P, Gaston KJ. 2015. Common European birds are declining rapidly while less abundant species' numbers are rising. Ecol. Lett. 18, 28-36. (10.1111/ele.12387) PubMed DOI

Voříšek P, Jiguet F, van Strien A, Škorpilová J, Klvaňová A, Gregory R. 2010. Trends in abundance and biomass of widespread European farmland birds: how much have we lost? BOU Proceedings–Lowland Farmland Birds III. See http://www.retecologicabasilicata.it/ambiente/files/docs/DOCUMENT_FILE_109742.pdf.

Rosenberg KV, et al. 2019. Decline of the North American avifauna. Science 366, 120-124. (10.1126/science.aaw1313) PubMed DOI

Burns F, Eaton MA, Burfield IJ, Klvaňová A, Šilarová E, Staneva A, Gregory RD. 2021. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16 647-16 660. (10.1002/ece3.8282) PubMed DOI PMC

McKinney ML, Lockwood JL. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450-453. (10.1016/S0169-5347(99)01679-1) PubMed DOI

Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD. 2014. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1-22. (10.1111/ibi.12118) DOI

Gregory RD, et al. 2009. An indicator of the impact of climatic change on European bird populations. PLoS ONE 4, e4678. (10.1371/journal.pone.0004678) PubMed DOI PMC

Mason LR, et al. 2019. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337-354. (10.1007/s10584-019-02549-9) DOI

Stephens PA, et al. 2016. Consistent response of bird populations to climate change on two continents. Science 352, 84-87. (10.1126/science.aac4858) PubMed DOI

European Commission. 2018. List of the birds of the European Union. European Commission, N2K Group and BirdLife International. See https://environment.ec.europa.eu/topics/nature-and-biodiversity/birds-directive_en.

Stanbury A, et al. 2021. The status of our bird populations: the fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723-747.

Woodward I, Aebischer N, Burnell D, Eaton MA, Frost T, Hall C, Stroud DA, Noble DG. 2020. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69-104.

Holling M, Eaton MA. 2020. Rare breeding birds in the UK in 2018. Br. Birds 113, 737-791.

Burns F, Eaton MA, Burfield IJ, Klvaňová A, Šilarová E, Staneva A, Gregory RD. 2021. Code for: Abundance decline in the avifauna of the European Union reveals global similarities in biodiversity change: input datasets and species results. Zenodo. (10.5281/zenodo.5544548) PubMed DOI PMC

Eionet. 2020. Article 12 web tool: population status and trends of birds under Article 12 of the Birds Directive. See https://nature-art12.eionet.europa.eu/article12/.

European Union. 1992. Directive 92/43/EEC, on the conservation of natural habitats and of wild fauna and flora. See http://www.eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31992L0043&from=EN.

European Union. 2009. Directive 2009/147/EC, of the European parliament and of the council on the conservation of wild birds. See http://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0147&from=EN.

Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J. 2005. The Living Planet Index: using species population time series to track trends in biodiversity. Phil. Trans. R. Soc. B 360, 289-295. (10.1098/rstb.2004.1584) PubMed DOI PMC

Brlík V, et al. 2021. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 1-9. (10.1038/s41597-021-00804-2) PubMed DOI PMC

Brlík V, et al. 2020. Code for: Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Zenodo. (10.5281/zenodo.4590199) PubMed DOI PMC

Tobias JA, et al. 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597. (10.1111/ele.13898) PubMed DOI

Smith AC. 2019. Code for: AdamCSmith/Estimating_Change_in_NorthAmerican_Birds (Version v0.1). Zenodo. (10.5281/zenodo.3218403) DOI

Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FP. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93-105. (10.1016/j.biocon.2006.02.008) DOI

Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2018. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1. See https://cran.r-project.org/web/packages/caper/index.html.

Barton K. 2022. MuMIn: multi-model inference. R package version 1.46.0. See https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf.

Richards SA. 2008. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218-227. (10.1111/j.1365-2664.2007.01377.x) DOI

R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Brown BL, Downing AL, Leibold MA. 2016. Compensatory dynamics stabilize aggregate community properties in response to multiple types of perturbations. Ecology 97, 2021-2033. (10.1890/15-1951.1) PubMed DOI

Gonzalez A, Loreau M. 2009. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393-414. (10.1146/annurev.ecolsys.39.110707.173349) DOI

Valdivia N, González AE, Manzur T, Broitman BR. 2013. Mesoscale variation of mechanisms contributing to stability in rocky shore communities. PLoS ONE 8, e54159. (10.1371/journal.pone.0054159) PubMed DOI PMC

Chamberlain DE, Fuller R, Bunce J, GH R, Duckworth J, Shrubb M. 2000. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771-788. (10.1046/j.1365-2664.2000.00548.x) DOI

Tucker G, Heath M. 1994. Birds in Europe their conservation status (BirdLife conservation series 3). Cambridge, UK: Birdlife International.

Donald PF, Green R, Heath M. 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proc. R. Soc. Lond. B 268, 25-29. (10.1098/rspb.2000.1325) PubMed DOI PMC

Nègre F. 2022. Fact Sheets on the European Union: Financing of the CAP. See https://www.europarl.europa.eu/factsheets/en/sheet/106/financing-of-the-cap (Last accessed 21st September 2022).

Pe'er G, et al. 2014. EU agricultural reform fails on biodiversity. Science 344, 1090-1092. (10.1126/science.1253425) PubMed DOI

De Laet J, Summers-Smith J. 2007. The status of the urban house sparrow Passer domesticus in north-western Europe: a review. J. Ornithol. 148, 275-278. (10.1007/s10336-007-0154-0) DOI

Heldbjerg H, et al. 2019. Contrasting population trends of common starlings (Sturnus vulgaris) across Europe. Ornis Fennica 96, 153-168.

McGill B. 2019. Did North America really lose 3 billion birds? What does it mean? In Dynamic ecology. See https://dynamicecology.wordpress.com/2019/09/20/did-north-america-really-lose-3-billion-birds-what-does-it-mean/.

Berigan LA, Greig EI, Bonter DN. 2020. Urban house sparrow (Passer domesticus) populations decline in North America. The Wilson J. Ornithol. 132, 248-258.

Keller V, et al. 2020. European breeding bird atlas 2: distribution, abundance and change. Barcelona, Spain: European Bird Census Council & Lynx Edicions.

Balmer DE, Gillings S, Caffrey B, Swann R, Downie I, Fuller R. 2013. Bird atlas 2007–11: the breeding and wintering birds of Britain and Ireland. Thetford, UK: BTO.

Donald PF, Sanderson FJ, Burfield IJ, Bierman SM, Gregory RD, Waliczky Z. 2007. International conservation policy delivers benefits for birds in Europe. Science 317, 810-813. (10.1126/science.1146002) PubMed DOI

Sanderson FJ, et al. 2016. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 9, 172-180. (10.1111/conl.12196) DOI

European Environment Agency. 2020. State of nature in the EU: results from reporting under the nature directives 2013–2018. EEA Report No. 10/2020. ISSN 1725-9177. Denmark. See https://www.eea.europa.eu/publications/state-of-nature-in-the-eu-2020.

Gaston KJ. 2010. Valuing common species. Science 327, 154-155. (10.1126/science.1182818) PubMed DOI

Gaston KJ, Cox DTC, Canavelli SB, García D, Hughes B, Maas B, Martínez D, Ogada D, Inger R. 2018. Population abundance and ecosystem service provision: the case of birds. Bioscience 68, 264-272. (10.1093/biosci/biy005) PubMed DOI PMC

Gaston KJ, Fuller RA. 2008. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14-19. (10.1016/j.tree.2007.11.001) PubMed DOI

Gaston KJ. 2011. Common ecology. Bioscience 61, 354-362. (10.1525/bio.2011.61.5.4) DOI

Moussy C, et al. 2021. A quantitative global review of species population monitoring. Conserv. Biol. 36, e13721. (10.1111/cobi.13721) PubMed DOI

Gonzalez A, Chase J, O'Connor M. 2023. A framework for the detection and attribution of biodiversity changes. Phil. Trans. R. Soc. B 378, 20220182. (10.1098/rstb.2022.0182) PubMed DOI PMC

Burns F, et al. 2022. Code for: Drivers of the changing abundance of European birds at two spatial scales: input data, species results and code. Zenodo. (10.5281/zenodo.7101117) DOI

Burns F, et al. . 2022. Drivers of the changing abundance of European birds at two spatial scales. Figshare. (10.6084/m9.figshare.c.6619727) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.6619727

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace