AVONET: morphological, ecological and geographical data for all birds
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu dopisy
Grantová podpora
NE/I028068/1
Natural Environment Research Council
NE/P004512/1
Natural Environment Research Council
PubMed
35199922
DOI
10.1111/ele.13898
Knihovny.cz E-zdroje
- Klíčová slova
- avian traits, continuous variables, data integration, ecomorphology, functional diversity, macroecology, macroevolution, trait-based ecology,
- MeSH
- biodiverzita MeSH
- biologická evoluce MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- lidé MeSH
- ptáci * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
African Climate and Development Initiative University of Cape Town Cape Town South Africa
Auckland Museum Auckland New Zealand
Biodiversity Initiative Houghton Michigan USA
Biodiversity Research Centre University of British Columbia Vancouver British Columbia Canada
Biological and Environmental Sciences University of Stirling Stirling UK
Bioversity International CGIAR Parc Scientifique Agropolis 2 Montpellier France
Bird Group Department of Life Sciences The Natural History Museum Tring UK
Birds Canada Port Rowan Ontario Canada
BSG Ecology Worton Park Worton Witney UK
Canterbury Museum Christchurch New Zealand
CATIE Cartago Turrialba Costa Rica
CE3C Depto de Ciências Agráriase Engenharia do Ambiente Angra do Heroísmo Açores Portugal
Coordenação de Zoologia Museu Paraense Emílio Goeldi Belém Pará Brazil
Cornell Lab of Ornithology Ithaca New York USA
Danish Institute for Advanced Study University of Southern Denmark Odense Denmark
Departamento de Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
Department for Continuing Education University of Oxford Oxford UK
Department of Animal and Plant Sciences University of Sheffield Sheffield UK
Department of Biological Sciences Goethe University Frankfurt Frankfurt am Main Germany
Department of Biological Sciences SUNY Oswego Oswego New York USA
Department of Biology Missouri State University Springfield Missouri USA
Department of Biotechnology Halu Oleo University Kendari Sulawesi Tenggara Indonesia
Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
Department of Ecology Faculty of Science Charles University Praha Czech Republic
Department of Ecology Institute of Zoology Johannes Gutenberg University Mainz Mainz Germany
Department of Environmental Science and Policy George Mason University Fairfax Virginia USA
Department of Evolution Ecology and Organismal Biology Ohio State University Columbus Ohio USA
Department of Integrative Biology University of Guelph Guelph Ontario Canada
Department of Life Sciences Imperial College London Ascot UK
Department of Life Sciences Natural History Museum London UK
Department of Natural History Royal Ontario Museum Toronto Ontario Canada
Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
Department of Ornithology American Museum of Natural History New York New York USA
Department of Recent Vertebrates Royal Belgian Institute of Natural Sciences Brussels Belgium
Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
Department of Zoology and Aquatic Sciences Copperbelt University Kitwe Zambia
Department of Zoology National Museums of Kenya Nairobi Kenya
Department of Zoology Palacký University Olomouc Czech Republic
Department of Zoology School of Natural Sciences Trinity College Dublin Dublin Ireland
Department of Zoology University of Cambridge Cambridge UK
Department of Zoology University of Oxford Oxford UK
Durban Natural Science Museum Durban South Africa
Fenner School of Environment and Society Australian National University Canberra Australia
Finnish Museum of Natural History University of Helsinki Helsinki Finland
Future Fit Foundation Spitalfields London UK
GEES and Birmingham Institute of Forest Research University of Birmingham Birmingham UK
Institut für Geowissenschaften Goethe University Frankfurt Frankfurt am Main Germany
Institute for Ecology Evolution and Diversity Goethe University Frankfurt Frankfurt am Main Germany
Institute of Ecology Peking University Beijing China
Institute of Zoology Chinese Academy of Sciences Beijing China
Instituto de Ciencias Naturales Universidad Nacional de Colombia Bogotá Colombia
Instituto de Ecología Universidad Mayor de San Andres La Paz Bolivia
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Lee Kong Chian Natural History Museum National University of Singapore Singapore Singapore
Louisiana State University Health Sciences Center Shreveport Shreveport Louisina USA
Moore Laboratory of Zoology Occidental College Los Angeles California USA
Museu de Zoologia da Universidade de Sao Paulo São Paulo SP Brazil
Museum of Comparative Zoology Harvard University Cambridge Massachusetts USA
Museum of Natural History University of the Philippines Los Baños Los Baños Laguna Philippines
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Natural History Research Center Shanghai Natural History Museum Shanghai China
Natural History Section Department of National Museum Colombo Sri Lanka
Nature based Solutions Initiative Department of Zoology University of Oxford Oxford UK
Ornithology Section Zoological Research Museum Alexander Koenig Bonn Germany
Ornithology Section Zoology Division Philippine National Museum Rizal Park Manila Philippines
Peabody Museum of Natural History Yale University New Haven Connecticut USA
Programa de Biología Universidad de la Salle Bogotá Colombia
School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
School of Biological Sciences Royal Holloway University of London Egham UK
School of Biological Sciences University of Auckland Auckland New Zealand
School of Biological Sciences University of Bristol Bristol UK
School of Biological Sciences University of Utah Salt Lake City Utah USA
School of Earth Sciences University of Bristol Bristol UK
Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
Senckenberg Natural History Collections Museum of Zoology Dresden Germany
South African Ringing Unit University of Cape Town Rondebosch Cape Town South Africa
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
UN Environment Programme World Conservation Monitoring Centre Cambridge UK
Universidad Nacional Agraria La Molina Av La Molina s n La Molina Lima Peru
Zobrazit více v PubMed
Bartomeus, I., Gravel, D., Tylianakis, J.M., Aizen, M.A., Dickie, I.A. & Bernard-Verdier, M. (2016) A common framework for identifying linkage rules across different types of interactions. Functional Ecology, 30, 1894-1903.
Bender, I.M.A., Kissling, W.D., Blendinger, P.G., Böhning-Gaese, K., Hensen, I., Kühn, I. et al. (2018) Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography, 41, 1910-1919.
Bender, I.M.A., Kissling, W.D., Böhning-Gaese, K., Hensen, I., Kühn, I., Nowak, L. et al. (2019) Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 9, 17708.
BirdLife International (2020) Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5.0 (accessed on 18/06/2021 from http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip).
Bock, W.J. (1994) Concepts and methods in ecomorphology. Journal of Biosciences, 19, 403-413.
Bregman, T.P., Lees, A.C., MacGregor, H.E.A., Darski, B., de Moura, N.G., Aleixo, A. et al. (2016) Using avian functional traits to quantify the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 283, 20161289.
Bregman, T.P., Lees, A.C., Seddon, N., MacGregor, H.E.A., Darski, B., Aleixo, A. et al. (2015) Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology, 96, 2692-2704.
Bright, J.A., Marugán-Lobón, J., Cobb, S.N. & Rayfield, E.J. (2016) The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences of the United States of America, 113, 5352-5357.
Cadotte, M.W., Carscadden, K. & Mirotchnick, N. (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079-1087.
Cernansky, R. (2017) Biodiversity moves beyond counting species. Nature, 546, 22-24.
Chira, A.M., Cooney, C.R., Bright, J.A., Capp, E.J.R., Hughes, E.C., Moody, C.J.A. et al. (2018) Correlates of rate heterogeneity in avian ecomorphological traits. Ecology Letters, 21, 1505-1514.
Chira, A.M., Cooney, C.R., Bright, J.A., Capp, E.J.R., Hughes, E.C., Moody, C.J.A. et al. (2020) The signature of competition in ecomorphological traits across the avian radiation. Proceedings of the Royal Society B-Biological Sciences, 287, 20201585.
Claramunt, S. (2010) Discovering exceptional diversifications at continental scales: the case of the endemic families of Neotropical suboscine passerines. Evolution, 64, 2004-2019.
Claramunt, S. (2021) Flight efficiency explains differences in natal dispersal distances in birds. Ecology, 102, e03442.
Clements, J.F., Schulenberg, T.S., Iliff, M.J., Billerman, S.M., Fredericks, T.A., Gerbracht, J.A. et al. (2021) The eBird/Clements checklist of birds of the world: v2021. Available at: https://www.birds.cornell.edu/clementschecklist/download/
Cooney, C.R., Bright, J.A., Capp, E.J.R., Chira, A.M., Hughes, E.C., Moody, C.J.A. et al. (2017) Mega-evolutionary dynamics of the adaptive radiation of birds. Nature, 542, 344-347.
Crouch, N.M.A. & Tobias, J.A. (2022) The causes and ecological context of rapid morphological evolution in birds. Ecology Letters, 25, 611-623.
Darwin, C. (1859) On the origin of species by means of natural selection. London: John Murray.
Dehling, D.M., Jordano, P., Schaefer, H.M., Böhning-Gaese, K. & Schleuning, M. (2016) Morphology predicts species’ functional roles and their degree of specialization in plant-frugivore interactions. Proceedings of the Royal Society B-Biological Sciences, 283, 20152444.
Derryberry, E., Seddon, N., Derryberry, G., Claramunt, S., Seeholzer, G., Brumfield, R.T. et al. (2018) Ecological drivers of song evolution in birds: disentangling the effects of habitat and morphology. Ecology & Evolution, 8, 1890-1905.
Des Roches, S., Post, D.M., Turley, N.E., Bailey, J.K., Hendry, A.P., Kinnison, M.T. et al. (2018) The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2, 57-64.
Diamond, J.M. (1975) Assembly of species communities. In: Cody, M.L. & Diamond, J.M. (Eds.) Ecology and evolution of communities. Cambridge: Harvard University Press, pp. 342-444.
Díaz, S., Purvis, A., Cornelissen, J.H.C., Mace, G.M., Donoghue, M.J., Ewers, R.M. et al. (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 3, 2958-2975.
Didham, R.K., Leather, S.R. & Basset, Y. (2016) Circle the bandwagons - challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conservation and Diversity, 9, 1-3.
Drury, J.P., Tobias, J.A., Burns, K.J., Mason, N.A., Shultz, A.J. & Morlon, H. (2018) Contrasting impacts of competition on ecological and social trait evolution in songbirds. PLoS Biology, 16, e2003563.
Enquist, B.J., Norberg, J., Bonser, S.P., Violle, C., Webb, C.T., Henderson, A. et al. (2015) Scaling from traits to ecosystems: Developing a general Trait Driver Theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52, 249-318.
Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. (2016) Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution, 31, 190-203.
Feng, S., Stiller, J., Deng, Y., Armstrong, J., Fang, Q.I., Reeve, A.H. et al. (2020) Dense sampling of bird diversity increases power of comparative genomics. Nature, 587, 252-257.
FitzJohn, R. (2010) Quantitative traits and diversification. Systematic Biology, 59, 619-633.
Freeman, B.G., Weeks, T., Schluter, D. & Tobias, J.A. (2022) The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecology Letters, 25, 635-646.
Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J. et al. (2017) Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173.
Gallagher, R.V., Falster, D.S., Maitner, B., Salguero-Gómez, R., Vandvik, V., Pearse, W.D. et al. (2020) Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology & Evolution, 4, 294-303.
Garnett, S.T. & Christidis, L. (2017) Taxonomic anarchy hampers conservation. Nature, 546, 25-27.
Gravel, D., Albouy, C. & Thuiller, W. (2016) The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B, 371, 20150268.
Hanz, D.M., Böhning-Gaese, K., Ferger, S.W., Fritz, S.A., Neuschulz, E.L., Quitián, M. et al. (2019) Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 46, 291-303.
Harfoot, M.B.J., Newbold, T., Tittensor, D.P., Emmott, S., Hutton, J., Lyutsarev, V. et al. (2014) Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biology, 12, e1001841.
Hooper, D.U., Solan, M., Symstad, A., Díaz, S., Gessner, M.O., Buchmann, N. et al. (2002) Species diversity, functional diversity and ecosystem functioning. In: Loreau, M., Naeem, S. & Inchausti, P. (Eds.) Biodiversity and ecosystem functioning: synthesis and perspectives. New York: Oxford University Press, pp. 195-208.
Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinsohn, T.M., Lobo, J.M. & Ladle, R.J. (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology Evolution and Systematics, 46, 523-549.
Jetz, W., Sekecioglu, C.H. & Watson, J.E.M. (2008) Ecological correlates and conservation implications of overestimating species geographic ranges. Conservation Biology, 22, 110-119.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012) The global diversity of birds in space and time. Nature, 491, 444-448.
Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O'Dell, J., Orme, C.D.L. et al. (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P. et al. (2020) TRY plant trait database - enhanced coverage and open access. Global Change Biology, 26, 189-190.
Kennedy, J.D., Borregaard, M.K., Jønsson, K.A., Marki, P.Z., Fjeldså, J. & Rahbek, C. (2016) The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proceedings of the Royal Society B: Biological Sciences, 283, 20161922.
Kennedy, J.D., Marki, P.Z., Fjeldså, J. & Rahbek, C. (2020) The association between morphological and ecological characters across a global passerine radiation. Journal of Animal Ecology, 89, 1094-1108.
Kohli, B.A. & Jarzyna, M.A. (2021) Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes. Global Ecology and Biogeography, 30, 1139-1152.
Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
La Sorte, F.A. & Somveille, M. (2020) Survey completeness of a global citizen-science database of bird occurrence. Ecography, 43, 34-43.
Leisler, B. & Winkler, H. (1985) Ecomorphology. Current Ornithology, 2, 155-186.
Lepage, D., Vaidya, G. & Guralnick, R. (2014) Avibase - a database system for managing and organizing taxonomic concepts. ZooKeys, 420, 117-135.
MacArthur, R.H. (1972) Geographical ecology. New York: Harper and Row.
Mayfield, M.M. & Levine, J.M. (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
McEntee, J.P., Tobias, J.A., Sheard, C. & Burleigh, J.G. (2018) Tempo and timing of ecological trait divergence in bird speciation. Nature Ecology & Evolution, 2, 1120-1127.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
Miles, D.B. & Ricklefs, R.E. (1984) The correlation between ecology and morphology in deciduous forest passerine birds. Ecology, 65, 1629-1640.
Miller, E.T., Wagner, S.K., Harmon, L.J. & Ricklefs, R.E. (2017) Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. American Naturalist, 189, E14-E30.
Myhrvold, N.P., Baldridge, E., Chan, B., Divam, D., Freeman, D.L. & Ernest, S.K.M. (2015) An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology, 96, 3109.
Petchey, O.L. & Gaston, K.J. (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
Phillips, A.G., Töpfer, T., Rahbek, C., Böhning-Gaese, K. & Fritz, S.A. (2018) Effects of phylogeny and geography on ecomorphological traits in passerine bird clades. Journal of Biogeography, 45, 2337-2347.
Pigot, A.L., Jetz, W., Sheard, C. & Tobias, J.A. (2018) The macroecological dynamics of species coexistence in birds. Nature Ecology & Evolution, 2, 1012-1019.
Pigot, A.L., Sheard, C., Miller, E.T., Bregman, T., Freeman, B., Roll, U.et al. (2020) Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution, 4, 230-239.
Pigot, A.L. & Tobias, J.A. (2013) Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16, 330-338.
Pigot, A.L. & Tobias, J.A. (2015) Dispersal and the transition to sympatry in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 282, 20141929.
Pigot, A.L., Trisos, C.H. & Tobias, J.A. (2016) Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proceedings of the Royal Society B: Biological Sciences, 283, 20152013.
Ricklefs, R.E. & Travis, J. (1980) A morphological approach to the study of avian community organization. The Auk, 97, 321-338.
Schleuning, M., Fründ, J. & García, D. (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography, 38, 380-392.
Schleuning, M., Neuschulz, E.L., Albrecht, J., Bender, I.M.A., Bowler, D.E., Dehling, D.M. et al. (2020) Trait-based assessments of climate-change impacts on interacting species. Trends in Ecology & Evolution, 35, 319-328.
Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A. et al. (2020) Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nature Communications, 11, 2463.
Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González-Lagos, C., Pigot, A.L. et al. (2020) The global impact of urbanisation on avian functional diversity. Ecology Letters, 23, 962-972.
Stewart, P.S., Voskamp, A., Santini, L., Biber, M.F., Devenish, A.J.M., Hof, C. et al. (2022) Global impacts of climate change on avian functional diversity. Ecology Letters, 25, 673-685.
Stiller, J. & Zhang, G. (2019) Comparative phylogenomics, a stepping stone for bird biodiversity studies. Diversity, 11, 115.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S., Garnier, E. et al. (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 1125-1140.
Sullivan, B.L., Aycrigg, J.L., Barry, J.H., Bonney, R.E., Bruns, N., Cooper, C.B. et al. (2014) The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40.
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., Siemann, E. et al. (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
Tobias, J.A., Cornwallis, C.K., Derryberry, E.P., Claramunt, S., Brumfield, R.T. & Seddon, N. (2014) Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506, 359-363.
Tobias, J.A., Ottenburghs, J. & Pigot, A. (2020) Avian diversity: speciation, macroevolution and ecological function. Annual Review of Ecology, Evolution, and Systematics, 51, 533-560.
Tobias, J.A. & Pigot, A.L. (2019) Integrating behaviour and ecology into global biodiversity conservation strategies. Philosophical Transactions of the Royal Society B, 374, 20190012.
Trisos, C.H., Petchey, O.L. & Tobias, J.A. (2014) Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. American Naturalist, 184, 593-608.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. et al. (2007) Let the concept of trait be functional! Oikos, 116, 882-892.
Weeks, B.C., Naeem, S., Lasky, J.R. & Tobias, J.A. (2022) Diversity and extinction risk are inversely related at a global scales. Ecology Letters, 25, 697-707.
Weeks, B.C., Naeem, S., Winger, B.M. & Cracraft, J. (2020) The relationship between behavior and morphology in mixed-species flocks of island birds. Ecology and Evolution, 10, 10593-10606.
Weiss, K.C.B. & Ray, C.A. (2019) Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography, 42, 2012-2020.
Wilman, W., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014) EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology, 95, 2027.
Winemiller, K.O., Fitzgerald, D.B., Bower, L.M. & Pianka, E.R. (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18, 737-751.
Integrating animal tracking and trait data to facilitate global ecological discoveries
Thresholds for adding degraded tropical forest to the conservation estate
Range and climate niche shifts in European and North American breeding birds
Drivers of the changing abundance of European birds at two spatial scales
Farmland practices are driving bird population decline across Europe
Morphology and niche evolution influence hummingbird speciation rates