Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability

. 2023 Jul 20 ; 14 (1) : 4304. [epub] 20230720

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid37474503
Odkazy

PubMed 37474503
PubMed Central PMC10359363
DOI 10.1038/s41467-023-39093-1
PII: 10.1038/s41467-023-39093-1
Knihovny.cz E-zdroje

Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.

Albanian Ornithological Society Rr Vaso Pasha Nd 4 Apt 3 1004 Tirana Albania

Andorra Research Innovation Av Rocafort 21 23 AD600 Sant Julià de Lòria Andorra

Associazione FaunaViva Via Fumagalli 6 20143 Milano Italy

Atlas Steering Committee European Bird Census Council Na Bělidle 34 CZ 150 00 Prague 5 Czech Republic

Azerbaijan Ornithological Society M Mushfiq 4B ap 60 Baku AZ1004 Azerbaijan Republic

BirdLife Cyprus P O Box 12026 Nicosia 2340 Cyprus

BirdLife International David Attenborough Building Pembroke Street Cambridge CB2 3QZ UK

BirdLife Norway Sandgata 30b NO 7012 Trondheim Norway

BirdLife Österreich Museumsplatz 1 10 8 A 1070 Wien Austria

BirdLinks Armenia NGO 87b Dimitrov apt 14 Yerevan Armenia

BirdWatch Ireland Unit 20 Block D Bullford Business Campus Kilcoole Greystones County Wicklow Ireland

British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK

Bulgarian Society for the Protection of Birds BirdLife Bulgaria Sofia 1111 Yavorov complex bl 71 en 1 ap 1 Sofia Bulgaria

Catalan Ornithological Institute Natural History Museum of Barcelona Plaça Leonardo da Vinci 4 5 08019 Barcelona Spain

Center for Biodiversity Research Maksima Gorkog 40 3 21000 Novi Sad Serbia

Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK

Conservation Ecology Group Department of Biosciences Durham University South Road Durham DH1 3LE UK

Croatian Society for Birds and Nature Protection Gundulićeva 19a HR 31000 Osijek Croatia

CSIC Cerdanyola del Vallès 08193 Spain

Czech Society for Ornithology Na Bělidle 34 15000 Prague 5 Czechia

Czech University of Life Sciences Faculty of Environmental Sciences Dept of Ecology Kamýcká 129 165 21 Prague 6 Suchdol Prague Czech Republic

Dansk Ornitologisk Forening Copenhagen Denmark

DDA Federation of German Avifaunists An den Speichern 2 D 48157 Münster Germany

Department of Biological Geological and Environmental Sciences University of Bologna Via F Selmi 3 40126 Bologna Italy

Department of Biology Lund University Lund Sweden

Department of Biology University of York YO10 5DD York UK

DOPPS BirdLife Slovenia Tržaška c 2 SI 1000 Ljubljana Slovenia

Ecological and Forestry Applications Research Centre 08193 Cerdanyola del Vallès Spain

Environmental Protection Agency of Montenegro 4 proleterske 19 81000 Podgorica Montenegro

Forest Science and Tecnology Centre Carretera vella de Sant Llorenç de Morunys km 2 25280 Sant Llorenç de Morunys Spain

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Hellenic Ornithological Society BirdLife Greece Agiou Konstantinou 52 Athens 10437 Greece

Inst of Biology Martin Luther Univ Halle Wittenberg Halle Germany

Institute for Biochemistry and Biology University of Potsdam Potsdam Germany

Institute for Environment and Nature Ministry of Economy and Sustainable Development Radnicka cesta 80 10 000 Zagreb Croatia

Institute of Zoology Ilia State University Kakutsa Cholokashvili Ave 3 5 Tbilisi 0162 Georgia

Kosovo Ornithological Society Str Hysni Gashi no 28 Kalabri 10 000 Prishtinë Republic of Kosovo

Lithuanian Ornithological Society Naugarduko st 47 3 LT 03208 Vilnius Lithuania

Macedonian Ecological Society Blvd Boris Trajkovski Str 7 9a Skopje N Macedonia

Max Planck Institute of Animal Behaviour Am Obstberg 1 78315 Radolfzell Germany

MED Mediterranean Institute for Agriculture Environment and Development; LabOr Laboratório de Ornitologia Universidade de Évora Pólo da Mitra Apartado 94 7002 774 Évora Portugal

MME BirdLife Hungary 1121 Költő u 21 Budapest Hungary

Moldova State University A Mateevici str 60 Chişinău Republic of Moldova

Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland

Natagora Traverse des muses 1 5000 Namur Belgium

Nature reserve Roztochya Sichovyh Striltsiv 7 81070 Ivano Frankove Ukraine

Ornithological society Naše ptice Semira Frašte 6 71 000 Sarajevo Bosnia and Herzegovina

Polish Society for the Protection of Birds Odrowąża 24 05 270 Marki Poland

Pro Natura Donji Crnci bb 81412 Spuž Montenegro

Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands

Sociedad Española de Ornitología Melquiades Biencinto 34 28053 Madrid Spain

Sociedade Portuguesa para o Estudo das Aves Av Almirante Gago Coutinho 46A 1700 031 Lisboa Portugal

Society for Birds and Nature Protection Leova Republic of Moldova

Society for Research and Protection of Biodiversity Mladena Stojanovica 2 78 000 Banja Luka Bosnia and Herzegovina

Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands

Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland

TAA Dzikaja pryroda Parnikovaya Street 11 office 4 Minsk 220114 Belarus

The Helsinki Lab of Ornithology Finnish Museum of Natural History University of Helsinki Helsinki Finland

Ukrainian Society for the Protection of Birds P O Box 33 Kyiv 01103 Ukraine

University of Novi Sad Faculty of Sciences Department of Biology and Ecology Trg Dositeja Obradovića 3 Novi Sad 21000 Serbia

University of Nyíregyháza 4400 Sóstói út 31 b Nyíregyháza Hungary

WWF Turkey Büyük Postane Caddesi No 19 Kat 5 34420 Bahçekapı Fatih İstanbul Turkey

York Environmental Sustainability Institute University of York York YO10 5NG UK

Zoological Museum of Lomonosov Moscow State University Bolshaya Nikitskaya Str 2 Moscow 125009 Russia

Zobrazit více v PubMed

Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with High Levels of Climate Warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI

Stephens PA, et al. Consistent response of bird populations to climate change on two continents. Science. 2016;352:84–87. doi: 10.1126/science.aac4858. PubMed DOI

IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

Zuckerberg B, Woods AM, Porter WF. Poleward shifts in breeding bird distributions in New York State. Glob. Chang. Biol. 2009;15:1866–1883. doi: 10.1111/j.1365-2486.2009.01878.x. DOI

Auer SK, King DI. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 2014;23:867–875. doi: 10.1111/geb.12174. DOI

Gillings S, Balmer DE, Fuller RJ. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Chang. Biol. 2015;21:2155–2168. doi: 10.1111/gcb.12823. PubMed DOI

VanDerWal J, et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 2013;3:239–243. doi: 10.1038/nclimate1688. DOI

Sirami C, Brotons L, Martin J-L. Spatial extent of bird species response to landscape changes: colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography. 2008;31:509–518. doi: 10.1111/j.0906-7590.2008.05403.x. DOI

Faurby S, Araújo MB. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Chang. 2018;8:252–256. doi: 10.1038/s41558-018-0089-x. DOI

Rumpf SB, et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 2019;10:4293. doi: 10.1038/s41467-019-12343-x. PubMed DOI PMC

Pacifici M, et al. Species/’ traits influenced their response to recent climate change. Nat. Clim. Chang. 2017;7:205–208. doi: 10.1038/nclimate3223. DOI

Foden WB, et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 2019;10:e551. doi: 10.1002/wcc.551. DOI

Devictor V, et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012;2:121–124. doi: 10.1038/nclimate1347. DOI

Buckley LB, Kingsolver JG. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. Vol. 43. 2012;43:205–226. doi: 10.1146/annurev-ecolsys-110411-160516. DOI

Välimäki K, Lindén A, Lehikoinen A. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia. 2016;181:313–321. doi: 10.1007/s00442-015-3525-x. PubMed DOI

Della Rocca F, Milanesi P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 2020;47:1427–1438. doi: 10.1111/jbi.13804. DOI

White HJ, Montgomery IW, Lennon JJ. Contribution of local rarity and climatic suitability to local extinction and colonization varies with species traits. J. Anim. Ecol. 2018;87:1560–1572. doi: 10.1111/1365-2656.12881. PubMed DOI

Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2012;2:686–690. doi: 10.1038/nclimate1539. DOI

Coristine LE, Kerr JT. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecol. Evol. 2015;5:5162–5176. doi: 10.1002/ece3.1683. PubMed DOI PMC

Hagemeijer, E. J. M. & Blair, M. J. The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance (T & A.D. Poyser, 1997).

Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change (European Bird Census Council and Lynx Edicions, 2020).

Huntley, B., Green, R. E., Collingham, Y. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Durham University, The RSPB and Lynx Edicions, 2007).

Huntley B, Collingham YC, Willis SG, Green RE. Potential impacts of climatic change on European breeding birds. PLoS One. 2008;3:E1439. doi: 10.1371/journal.pone.0001439. PubMed DOI PMC

Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI

Beale CM, Lennon JJ, Gimona A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA. 2008;105:14908–14912. doi: 10.1073/pnas.0803506105. PubMed DOI PMC

Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. 2009;106:19729–19736. doi: 10.1073/pnas.0901639106. PubMed DOI PMC

Briscoe NJ, et al. Can dynamic occupancy models improve predictions of species’ range dynamics? A test using Swiss birds. Glob. Chang. Biol. 2021;27:4269–4282. doi: 10.1111/gcb.15723. PubMed DOI

Rapacciuolo G, et al. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. PLoS One. 2012;7:e40212. doi: 10.1371/journal.pone.0040212. PubMed DOI PMC

Venne S, Currie DJ. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021;27:873–886. doi: 10.1111/ddi.13238. DOI

Sofaer HR, Jarnevich CS, Flather CH. Misleading prioritizations from modelling range shifts under climate change. Glob. Ecol. Biogeogr. 2018;27:658–666. doi: 10.1111/geb.12726. DOI

Huang Q, et al. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Sci. Total Environ. 2023;857:159603. doi: 10.1016/j.scitotenv.2022.159603. PubMed DOI

Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).

Kuemmerle T, et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016;11:64020. doi: 10.1088/1748-9326/11/6/064020. DOI

de Juana, E. & Suárez, F. de Juana, E. and Suárez, F. in Handbook of the Birds of the World Alive (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and de Juana, E.) in Handbook of the Birds of the World Alive (Lynx Edicions, Barcelona, 2004).

Di Cecco GJ, Hurlbert AH. Anthropogenic drivers of avian community turnover from local to regional scales. Glob. Chang. Biol. 2022;28:770–781. doi: 10.1111/gcb.15967. PubMed DOI

Krüger O, Grünkorn T, Struwe-Juhl B. The return of the white-tailed eagle (Haliaeetus albicilla) to northern Germany: Modelling the past to predict the future. Biol. Conserv. 2010;143:710–721. doi: 10.1016/j.biocon.2009.12.010. DOI

Ratcliffe DA. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol. 1970;7:67–115. doi: 10.2307/2401613. DOI

Newton I, Wyllie I. Recovery of a sparrowhawk population in relation to declining pesticide contamination. J. Appl. Ecol. 1992;29:476–484. doi: 10.2307/2404515. DOI

Sanderson FJ, et al. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 2016;9:172–180. doi: 10.1111/conl.12196. DOI

Van Schmidt ND, Beissinger SR. The rescue effect and inference from isolation–extinction relationships. Ecol. Lett. 2020;23:598–606. doi: 10.1111/ele.13460. PubMed DOI

Beissinger SR, Riddell EA. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 2021;52:47–66. doi: 10.1146/annurev-ecolsys-012021-092849. DOI

Jarzyna MA, et al. Accounting for the space-varying nature of the relationships between temporal community turnover and the environment. Ecography. 2014;37:1073–1083.

MacLean SA, Beissinger SR. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 2017;23:4094–4105. doi: 10.1111/gcb.13736. PubMed DOI

Gunnarsson TG, Sutherland WJ, Alves JA, Potts PM, Gill JA. Rapid changes in phenotype distribution during range expansion in a migratory bird. Proc. R. Soc. B Biol. Sci. 2012;279:411–416. doi: 10.1098/rspb.2011.0939. PubMed DOI PMC

Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI

Anderson BJ, et al. Dynamics of range margins for metapopulations under climate change. Proc. R. Soc. B Biol. Sci. 2009;276:1415–1420. doi: 10.1098/rspb.2008.1681. PubMed DOI PMC

Howard C, et al. Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds. Divers. Distrib. 2020;26:1442–1455. doi: 10.1111/ddi.13144. DOI

Huang Q, Sauer JR, Dubayah RO. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Glob. Chang. Biol. 2017;23:3610–3622. doi: 10.1111/gcb.13683. PubMed DOI

Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 2018;27:1268–1276. doi: 10.1111/geb.12774. DOI

Estrada A, Morales-Castilla I, Caplat P, Early R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 2016;31:190–203. doi: 10.1016/j.tree.2015.12.014. PubMed DOI

Dunning, J. B. CRC Handbook of Avian Body Masses, 2nd Edn (CRC Press, 2007).

Bird JP, et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 2020;34:1252–1261. doi: 10.1111/cobi.13486. PubMed DOI

Jetz W, Sekercioglu CH, Böhning-Gaese K. The worldwide variation in Avian Clutch size across species and space. PLoS Biol. 2008;6:e303. doi: 10.1371/journal.pbio.0060303. PubMed DOI PMC

Tobias JA, et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 2022;25:581–597. doi: 10.1111/ele.13898. PubMed DOI

BirdLife International. Birds in Europe: population estimates, trends and conservation status. (BirdLife International, 2004).

Wilman H, et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027. doi: 10.1890/13-1917.1. DOI

BirdLife International and NatureServe. Bird Species Distribution Maps of the World. Version 6.0. (BirdLife International, 2016).

Gilroy JJ, Gill JA, Butchart SHM, Jones VR, Franco AMA. Migratory diversity predicts population declines in birds. Ecol. Lett. 2016;19:308–317. doi: 10.1111/ele.12569. PubMed DOI

Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3-0. http://CRAN.R-project.org/package=vegan. (2015).

Ducatez S, Sol D, Sayol F, Lefebvre L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 2020;4:788–793. doi: 10.1038/s41559-020-1168-8. PubMed DOI

Lehikoinen A, et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 2019;25:577–588. doi: 10.1111/gcb.14522. PubMed DOI

Brochet A-L, et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird. Conserv. Int. 2016;26:1–28. doi: 10.1017/S0959270915000416. DOI

Brochet A-L, et al. Illegal killing and taking of birds in Europe outside the Mediterranean: assessing the scope and scale of a complex issue. Bird. Conserv. Int. 2019;29:10–40. doi: 10.1017/S0959270917000533. DOI

BirdLife International. European Red List of Birds. https://www.birdlife.org/wp-content/uploads/2022/05/BirdLife-European-Red-List-of-Birds-2021.pdf.pdf (2015).

Barbet‐Massin M, Thuiller W, Jiguet F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography. 2010;33:878–886. doi: 10.1111/j.1600-0587.2010.06181.x. DOI

Titley MA, Butchart SHM, Jones VR, Whittingham MJ, Willis SG. Global inequities and political borders challenge nature conservation under climate change. Proc. Natl Acad. Sci. USA. 2021;118:e2011204118. doi: 10.1073/pnas.2011204118. PubMed DOI PMC

Harris I, Jones PD, Osborn TJ, Lister DH. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 dataset. Int. J. Climatol. 2014;34:623–642. doi: 10.1002/joc.3711. DOI

Gregory RD, et al. An indicator of the impact of climatic change on European bird populations. PLoS One. 2009;4:e4678. doi: 10.1371/journal.pone.0004678. PubMed DOI PMC

Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG. The drivers of avian abundance: patterns in the relative importance of climate and land use. Glob. Ecol. Biogeogr. 2015;24:1249–1260. doi: 10.1111/geb.12377. DOI

Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2012;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI

Bagchi R, et al. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob. Chang. Biol. 2013;19:1236–1248. doi: 10.1111/gcb.12123. PubMed DOI

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2018;00:1–8.

Manel S, Williams HC, Ormerod SJ. Evaluating presence–absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 2001;38:921–931. doi: 10.1046/j.1365-2664.2001.00647.x. DOI

Brotons L, Thuiller W, Araujo MB, Hirzel AH. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography. 2004;27:437–448. doi: 10.1111/j.0906-7590.2004.03764.x. DOI

Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI

Dormann CF. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 2007;16:129–138. doi: 10.1111/j.1466-8238.2006.00279.x. DOI

Legendre P. Spatial autocorrelation—trouble or new paradigm. Ecology. 1993;74:1659–1673. doi: 10.2307/1939924. DOI

Moore, R. T. blockTools: Blocking, Assignment, and Diagnosing Interference in Randomized Experiments. https://cran.r-project.org/web/packages/blockTools/blockTools.pdf (2014).

Mccullagh P. Generalized linear-models. Eur. J. Oper. Res. 1984;16:285–292. doi: 10.1016/0377-2217(84)90282-0. DOI

Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI

Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008;77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x. PubMed DOI

Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI

Cutler DR, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–2792. doi: 10.1890/07-0539.1. PubMed DOI

Prasad AM, Iverson LR, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 2006;9:181–199. doi: 10.1007/s10021-005-0054-1. DOI

Guillera-Arroita G, et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015;24:276–292. doi: 10.1111/geb.12268. DOI

Maes, J. et al. Mapping and Assessment of Ecosystems and their Services; Trends in Ecosystems and Ecosystem Services in the European Union Between 2000 and 2010.https://publications.jrc.ec.europa.eu/repository/handle/JRC94889 (2015).

Magurran AE. Measuring biological diversity. Afr. J. Aquat. Sci. 2004;29:285–286. doi: 10.2989/16085910409503825. DOI

Fisher, N. I. Statistical Analysis of Circular Data (Cambridge University Press, 1995).

Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i02. PubMed DOI

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI

Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI

R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).

Howard, C. et al. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability. Zenodo. 10.5281/zenodo.7862772 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...