Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
37474503
PubMed Central
PMC10359363
DOI
10.1038/s41467-023-39093-1
PII: 10.1038/s41467-023-39093-1
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Albanian Ornithological Society Rr Vaso Pasha Nd 4 Apt 3 1004 Tirana Albania
Andorra Research Innovation Av Rocafort 21 23 AD600 Sant Julià de Lòria Andorra
Associazione FaunaViva Via Fumagalli 6 20143 Milano Italy
Azerbaijan Ornithological Society M Mushfiq 4B ap 60 Baku AZ1004 Azerbaijan Republic
BirdLife Cyprus P O Box 12026 Nicosia 2340 Cyprus
BirdLife International David Attenborough Building Pembroke Street Cambridge CB2 3QZ UK
BirdLife Norway Sandgata 30b NO 7012 Trondheim Norway
BirdLife Österreich Museumsplatz 1 10 8 A 1070 Wien Austria
BirdLinks Armenia NGO 87b Dimitrov apt 14 Yerevan Armenia
British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK
Center for Biodiversity Research Maksima Gorkog 40 3 21000 Novi Sad Serbia
Conservation Ecology Group Department of Biosciences Durham University South Road Durham DH1 3LE UK
Croatian Society for Birds and Nature Protection Gundulićeva 19a HR 31000 Osijek Croatia
CSIC Cerdanyola del Vallès 08193 Spain
Czech Society for Ornithology Na Bělidle 34 15000 Prague 5 Czechia
Dansk Ornitologisk Forening Copenhagen Denmark
DDA Federation of German Avifaunists An den Speichern 2 D 48157 Münster Germany
Department of Biology Lund University Lund Sweden
Department of Biology University of York YO10 5DD York UK
DOPPS BirdLife Slovenia Tržaška c 2 SI 1000 Ljubljana Slovenia
Ecological and Forestry Applications Research Centre 08193 Cerdanyola del Vallès Spain
Environmental Protection Agency of Montenegro 4 proleterske 19 81000 Podgorica Montenegro
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Hellenic Ornithological Society BirdLife Greece Agiou Konstantinou 52 Athens 10437 Greece
Inst of Biology Martin Luther Univ Halle Wittenberg Halle Germany
Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
Institute of Zoology Ilia State University Kakutsa Cholokashvili Ave 3 5 Tbilisi 0162 Georgia
Kosovo Ornithological Society Str Hysni Gashi no 28 Kalabri 10 000 Prishtinë Republic of Kosovo
Lithuanian Ornithological Society Naugarduko st 47 3 LT 03208 Vilnius Lithuania
Macedonian Ecological Society Blvd Boris Trajkovski Str 7 9a Skopje N Macedonia
Max Planck Institute of Animal Behaviour Am Obstberg 1 78315 Radolfzell Germany
MME BirdLife Hungary 1121 Költő u 21 Budapest Hungary
Moldova State University A Mateevici str 60 Chişinău Republic of Moldova
Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland
Natagora Traverse des muses 1 5000 Namur Belgium
Nature reserve Roztochya Sichovyh Striltsiv 7 81070 Ivano Frankove Ukraine
Ornithological society Naše ptice Semira Frašte 6 71 000 Sarajevo Bosnia and Herzegovina
Polish Society for the Protection of Birds Odrowąża 24 05 270 Marki Poland
Pro Natura Donji Crnci bb 81412 Spuž Montenegro
Sociedad Española de Ornitología Melquiades Biencinto 34 28053 Madrid Spain
Sociedade Portuguesa para o Estudo das Aves Av Almirante Gago Coutinho 46A 1700 031 Lisboa Portugal
Society for Birds and Nature Protection Leova Republic of Moldova
Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands
Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland
TAA Dzikaja pryroda Parnikovaya Street 11 office 4 Minsk 220114 Belarus
Ukrainian Society for the Protection of Birds P O Box 33 Kyiv 01103 Ukraine
University of Nyíregyháza 4400 Sóstói út 31 b Nyíregyháza Hungary
WWF Turkey Büyük Postane Caddesi No 19 Kat 5 34420 Bahçekapı Fatih İstanbul Turkey
York Environmental Sustainability Institute University of York York YO10 5NG UK
Zobrazit více v PubMed
Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with High Levels of Climate Warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI
Stephens PA, et al. Consistent response of bird populations to climate change on two continents. Science. 2016;352:84–87. doi: 10.1126/science.aac4858. PubMed DOI
IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).
Zuckerberg B, Woods AM, Porter WF. Poleward shifts in breeding bird distributions in New York State. Glob. Chang. Biol. 2009;15:1866–1883. doi: 10.1111/j.1365-2486.2009.01878.x. DOI
Auer SK, King DI. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 2014;23:867–875. doi: 10.1111/geb.12174. DOI
Gillings S, Balmer DE, Fuller RJ. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Chang. Biol. 2015;21:2155–2168. doi: 10.1111/gcb.12823. PubMed DOI
VanDerWal J, et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 2013;3:239–243. doi: 10.1038/nclimate1688. DOI
Sirami C, Brotons L, Martin J-L. Spatial extent of bird species response to landscape changes: colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography. 2008;31:509–518. doi: 10.1111/j.0906-7590.2008.05403.x. DOI
Faurby S, Araújo MB. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Chang. 2018;8:252–256. doi: 10.1038/s41558-018-0089-x. DOI
Rumpf SB, et al. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 2019;10:4293. doi: 10.1038/s41467-019-12343-x. PubMed DOI PMC
Pacifici M, et al. Species/’ traits influenced their response to recent climate change. Nat. Clim. Chang. 2017;7:205–208. doi: 10.1038/nclimate3223. DOI
Foden WB, et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 2019;10:e551. doi: 10.1002/wcc.551. DOI
Devictor V, et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012;2:121–124. doi: 10.1038/nclimate1347. DOI
Buckley LB, Kingsolver JG. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. Vol. 43. 2012;43:205–226. doi: 10.1146/annurev-ecolsys-110411-160516. DOI
Välimäki K, Lindén A, Lehikoinen A. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia. 2016;181:313–321. doi: 10.1007/s00442-015-3525-x. PubMed DOI
Della Rocca F, Milanesi P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 2020;47:1427–1438. doi: 10.1111/jbi.13804. DOI
White HJ, Montgomery IW, Lennon JJ. Contribution of local rarity and climatic suitability to local extinction and colonization varies with species traits. J. Anim. Ecol. 2018;87:1560–1572. doi: 10.1111/1365-2656.12881. PubMed DOI
Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2012;2:686–690. doi: 10.1038/nclimate1539. DOI
Coristine LE, Kerr JT. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecol. Evol. 2015;5:5162–5176. doi: 10.1002/ece3.1683. PubMed DOI PMC
Hagemeijer, E. J. M. & Blair, M. J. The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance (T & A.D. Poyser, 1997).
Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change (European Bird Census Council and Lynx Edicions, 2020).
Huntley, B., Green, R. E., Collingham, Y. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Durham University, The RSPB and Lynx Edicions, 2007).
Huntley B, Collingham YC, Willis SG, Green RE. Potential impacts of climatic change on European breeding birds. PLoS One. 2008;3:E1439. doi: 10.1371/journal.pone.0001439. PubMed DOI PMC
Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI
Beale CM, Lennon JJ, Gimona A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA. 2008;105:14908–14912. doi: 10.1073/pnas.0803506105. PubMed DOI PMC
Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. 2009;106:19729–19736. doi: 10.1073/pnas.0901639106. PubMed DOI PMC
Briscoe NJ, et al. Can dynamic occupancy models improve predictions of species’ range dynamics? A test using Swiss birds. Glob. Chang. Biol. 2021;27:4269–4282. doi: 10.1111/gcb.15723. PubMed DOI
Rapacciuolo G, et al. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. PLoS One. 2012;7:e40212. doi: 10.1371/journal.pone.0040212. PubMed DOI PMC
Venne S, Currie DJ. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions? Divers. Distrib. 2021;27:873–886. doi: 10.1111/ddi.13238. DOI
Sofaer HR, Jarnevich CS, Flather CH. Misleading prioritizations from modelling range shifts under climate change. Glob. Ecol. Biogeogr. 2018;27:658–666. doi: 10.1111/geb.12726. DOI
Huang Q, et al. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Sci. Total Environ. 2023;857:159603. doi: 10.1016/j.scitotenv.2022.159603. PubMed DOI
Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).
Kuemmerle T, et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016;11:64020. doi: 10.1088/1748-9326/11/6/064020. DOI
de Juana, E. & Suárez, F. de Juana, E. and Suárez, F. in Handbook of the Birds of the World Alive (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and de Juana, E.) in Handbook of the Birds of the World Alive (Lynx Edicions, Barcelona, 2004).
Di Cecco GJ, Hurlbert AH. Anthropogenic drivers of avian community turnover from local to regional scales. Glob. Chang. Biol. 2022;28:770–781. doi: 10.1111/gcb.15967. PubMed DOI
Krüger O, Grünkorn T, Struwe-Juhl B. The return of the white-tailed eagle (Haliaeetus albicilla) to northern Germany: Modelling the past to predict the future. Biol. Conserv. 2010;143:710–721. doi: 10.1016/j.biocon.2009.12.010. DOI
Ratcliffe DA. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol. 1970;7:67–115. doi: 10.2307/2401613. DOI
Newton I, Wyllie I. Recovery of a sparrowhawk population in relation to declining pesticide contamination. J. Appl. Ecol. 1992;29:476–484. doi: 10.2307/2404515. DOI
Sanderson FJ, et al. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 2016;9:172–180. doi: 10.1111/conl.12196. DOI
Van Schmidt ND, Beissinger SR. The rescue effect and inference from isolation–extinction relationships. Ecol. Lett. 2020;23:598–606. doi: 10.1111/ele.13460. PubMed DOI
Beissinger SR, Riddell EA. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 2021;52:47–66. doi: 10.1146/annurev-ecolsys-012021-092849. DOI
Jarzyna MA, et al. Accounting for the space-varying nature of the relationships between temporal community turnover and the environment. Ecography. 2014;37:1073–1083.
MacLean SA, Beissinger SR. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 2017;23:4094–4105. doi: 10.1111/gcb.13736. PubMed DOI
Gunnarsson TG, Sutherland WJ, Alves JA, Potts PM, Gill JA. Rapid changes in phenotype distribution during range expansion in a migratory bird. Proc. R. Soc. B Biol. Sci. 2012;279:411–416. doi: 10.1098/rspb.2011.0939. PubMed DOI PMC
Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI
Anderson BJ, et al. Dynamics of range margins for metapopulations under climate change. Proc. R. Soc. B Biol. Sci. 2009;276:1415–1420. doi: 10.1098/rspb.2008.1681. PubMed DOI PMC
Howard C, et al. Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds. Divers. Distrib. 2020;26:1442–1455. doi: 10.1111/ddi.13144. DOI
Huang Q, Sauer JR, Dubayah RO. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Glob. Chang. Biol. 2017;23:3610–3622. doi: 10.1111/gcb.13683. PubMed DOI
Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 2018;27:1268–1276. doi: 10.1111/geb.12774. DOI
Estrada A, Morales-Castilla I, Caplat P, Early R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 2016;31:190–203. doi: 10.1016/j.tree.2015.12.014. PubMed DOI
Dunning, J. B. CRC Handbook of Avian Body Masses, 2nd Edn (CRC Press, 2007).
Bird JP, et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 2020;34:1252–1261. doi: 10.1111/cobi.13486. PubMed DOI
Jetz W, Sekercioglu CH, Böhning-Gaese K. The worldwide variation in Avian Clutch size across species and space. PLoS Biol. 2008;6:e303. doi: 10.1371/journal.pbio.0060303. PubMed DOI PMC
Tobias JA, et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 2022;25:581–597. doi: 10.1111/ele.13898. PubMed DOI
BirdLife International. Birds in Europe: population estimates, trends and conservation status. (BirdLife International, 2004).
Wilman H, et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027. doi: 10.1890/13-1917.1. DOI
BirdLife International and NatureServe. Bird Species Distribution Maps of the World. Version 6.0. (BirdLife International, 2016).
Gilroy JJ, Gill JA, Butchart SHM, Jones VR, Franco AMA. Migratory diversity predicts population declines in birds. Ecol. Lett. 2016;19:308–317. doi: 10.1111/ele.12569. PubMed DOI
Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.3-0. http://CRAN.R-project.org/package=vegan. (2015).
Ducatez S, Sol D, Sayol F, Lefebvre L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 2020;4:788–793. doi: 10.1038/s41559-020-1168-8. PubMed DOI
Lehikoinen A, et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 2019;25:577–588. doi: 10.1111/gcb.14522. PubMed DOI
Brochet A-L, et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird. Conserv. Int. 2016;26:1–28. doi: 10.1017/S0959270915000416. DOI
Brochet A-L, et al. Illegal killing and taking of birds in Europe outside the Mediterranean: assessing the scope and scale of a complex issue. Bird. Conserv. Int. 2019;29:10–40. doi: 10.1017/S0959270917000533. DOI
BirdLife International. European Red List of Birds. https://www.birdlife.org/wp-content/uploads/2022/05/BirdLife-European-Red-List-of-Birds-2021.pdf.pdf (2015).
Barbet‐Massin M, Thuiller W, Jiguet F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography. 2010;33:878–886. doi: 10.1111/j.1600-0587.2010.06181.x. DOI
Titley MA, Butchart SHM, Jones VR, Whittingham MJ, Willis SG. Global inequities and political borders challenge nature conservation under climate change. Proc. Natl Acad. Sci. USA. 2021;118:e2011204118. doi: 10.1073/pnas.2011204118. PubMed DOI PMC
Harris I, Jones PD, Osborn TJ, Lister DH. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 dataset. Int. J. Climatol. 2014;34:623–642. doi: 10.1002/joc.3711. DOI
Gregory RD, et al. An indicator of the impact of climatic change on European bird populations. PLoS One. 2009;4:e4678. doi: 10.1371/journal.pone.0004678. PubMed DOI PMC
Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG. The drivers of avian abundance: patterns in the relative importance of climate and land use. Glob. Ecol. Biogeogr. 2015;24:1249–1260. doi: 10.1111/geb.12377. DOI
Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2012;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI
Bagchi R, et al. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob. Chang. Biol. 2013;19:1236–1248. doi: 10.1111/gcb.12123. PubMed DOI
Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2018;00:1–8.
Manel S, Williams HC, Ormerod SJ. Evaluating presence–absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 2001;38:921–931. doi: 10.1046/j.1365-2664.2001.00647.x. DOI
Brotons L, Thuiller W, Araujo MB, Hirzel AH. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography. 2004;27:437–448. doi: 10.1111/j.0906-7590.2004.03764.x. DOI
Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Dormann CF. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 2007;16:129–138. doi: 10.1111/j.1466-8238.2006.00279.x. DOI
Legendre P. Spatial autocorrelation—trouble or new paradigm. Ecology. 1993;74:1659–1673. doi: 10.2307/1939924. DOI
Moore, R. T. blockTools: Blocking, Assignment, and Diagnosing Interference in Randomized Experiments. https://cran.r-project.org/web/packages/blockTools/blockTools.pdf (2014).
Mccullagh P. Generalized linear-models. Eur. J. Oper. Res. 1984;16:285–292. doi: 10.1016/0377-2217(84)90282-0. DOI
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008;77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x. PubMed DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Cutler DR, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–2792. doi: 10.1890/07-0539.1. PubMed DOI
Prasad AM, Iverson LR, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 2006;9:181–199. doi: 10.1007/s10021-005-0054-1. DOI
Guillera-Arroita G, et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015;24:276–292. doi: 10.1111/geb.12268. DOI
Maes, J. et al. Mapping and Assessment of Ecosystems and their Services; Trends in Ecosystems and Ecosystem Services in the European Union Between 2000 and 2010.https://publications.jrc.ec.europa.eu/repository/handle/JRC94889 (2015).
Magurran AE. Measuring biological diversity. Afr. J. Aquat. Sci. 2004;29:285–286. doi: 10.2989/16085910409503825. DOI
Fisher, N. I. Statistical Analysis of Circular Data (Cambridge University Press, 1995).
Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i02. PubMed DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2019).
Howard, C. et al. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability. Zenodo. 10.5281/zenodo.7862772 (2023). PubMed PMC
Range and climate niche shifts in European and North American breeding birds