Range and climate niche shifts in European and North American breeding birds

. 2024 May 27 ; 379 (1902) : 20230013. [epub] 20240408

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38583472

Species respond dynamically to climate change and exhibit time lags. Consequently, species may not occupy their full climatic niche during range shifting. Here, we assessed climate niche tracking during recent range shifts of European and United States (US) birds. Using data from two European bird atlases and from the North American Breeding Bird Survey between the 1980s and 2010s, we analysed range overlap and climate niche overlap based on kernel density estimation. Phylogenetic multiple regression was used to assess the effect of species morphological, ecological and biogeographic traits on range and niche metrics. European birds shifted their ranges north and north-eastwards, US birds westwards. Range unfilling was lower than expected by null models, and niche expansion was more common than niche unfilling. Also, climate niche tracking was generally lower in US birds and poorly explained by species traits. Overall, our results suggest that dispersal limitations were minor in range shifting birds in Europe and the USA while delayed extinctions from unfavourable areas seem more important. Regional differences could be related to differences in land use history and monitoring schemes. Comparative analyses of range and niche shifts provide a useful screening approach for identifying the importance of transient dynamics and time-lagged responses to climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.

Zobrazit více v PubMed

Scheffers BR, et al. 2016. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671. (10.1126/science.aaf7671) PubMed DOI

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365-377. (10.1111/j.1461-0248.2011.01736.x) PubMed DOI PMC

Pecl GT, et al. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214. (10.1126/science.aai9214) PubMed DOI

Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW. 2018. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11 982-11 987. (10.1073/pnas.1804224115) PubMed DOI PMC

Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. 2013. Marine taxa track local climate velocities. Science 341, 1239-1242. (10.1126/science.1239352) PubMed DOI

Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771. (10.1126/science.1156831) PubMed DOI

Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G. 2020. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044-1059. (10.1038/s41559-020-1198-2) PubMed DOI

Urban MC, et al. 2016. Improving the forecast for biodiversity under climate change. Science 353, aad8466. (10.1126/science.aad8466) PubMed DOI

Svenning J-C, et al. 2014. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198-1209. (10.1111/j.1600-0587.2013.00574.x) PubMed DOI PMC

Zurell D, et al. 2016. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651-2664. (10.1111/gcb.13251) PubMed DOI PMC

Pulliam HR. 2000. On the relationship between niche and distribution. Ecol. Lett. 3, 349-361. (10.1046/j.1461-0248.2000.00143.x) DOI

Diez JM, Giladi I, Warren R, Pulliam HR. 2014. Probabilistic and spatially variable niches inferred from demography. J. Ecol. 102, 544-554. (10.1111/1365-2745.12215) DOI

Zurell D. 2017. Integrating demography, dispersal and interspecific interactions into bird distribution models. J. Avian Biol. 48, 1505-1516. (10.1111/jav.01225) DOI

Schurr FM, et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39, 2146-2162. (10.1111/j.1365-2699.2012.02737.x) DOI

Ralston J, DeLuca WV, Feldman RE, King DI. 2017. Population trends influence species ability to track climate change. Glob. Change Biol. 23, 1390-1399. (10.1111/gcb.13478) PubMed DOI

Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260-269. (10.1016/j.tree.2014.02.009) PubMed DOI

Atwater DZ, Ervine C, Barney JN. 2017. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34-43. (10.1038/s41559-017-0396-z) PubMed DOI

Välimäki K, Lindén A, Lehikoinen A. 2016. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia 181, 313-321. (10.1007/s00442-015-3525-x) PubMed DOI

Hällfors MH, Heikkinen RK, Kuussaari M, Lehikoinen A, Luoto M, Pöyry J, Virkkala R, Saastamoinen M, Kujala H. 2023. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol. Lett. 8, 89-100. (10.1093/evlett/qrad004) PubMed DOI PMC

Hallman TA, Guélat J, Antoniazza S, Kéry M, Sattler T. 2022. Rapid elevational shifts of Switzerland's avifauna and associated species traits. Ecosphere 13, e4194. (10.1002/ecs2.4194) DOI

Sheard C, Neate-Clegg MHC, Alioravainen N, Jones SEI, Vincent C, MacGregor HEA, Bregman TP, Claramunt S, Tobias JA. 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. (10.1038/s41467-020-16313-6) PubMed DOI PMC

Norberg UM, Rayner JMV. 1987. Ecological morphology and flight in bats (Mammalia\mathsemicolon Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. Lond. B 316, 335-427. (10.1098/rstb.1987.0030) DOI

Bader E, Jung K, Kalko EKV, Page RA, Rodriguez R, Sattler T. 2015. Mobility explains the response of aerial insectivorous bats to anthropogenic habitat change in the Neotropics. Biol. Conserv. 186, 97-106. (10.1016/j.biocon.2015.02.028) DOI

Lehikoinen A, Virkkala R. 2016. North by north-west: climate change and directions of density shifts in birds. Glob. Change Biol 22, 1121-1129. (10.1111/gcb.13150) PubMed DOI

Currie DJ, Venne S. 2017. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333-346. (10.1111/geb.12538) DOI

Howard C, et al. 2023. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability. Nat. Commun. 14, 4304. (10.1038/s41467-023-39093-1) PubMed DOI PMC

Huang Q, et al. 2023. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Sci. Total Environ. 857, 159603. (10.1016/j.scitotenv.2022.159603) PubMed DOI

Broennimann O, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481-497. (10.1111/j.1466-8238.2011.00698.x) DOI

Hagemeijer WJM, Blair M. 1997. The EBCC atlas of European breeding birds: their distribution and abundance. London, UK: T & A.D. Poyser.

Keller V, et al. 2020. European breeding bird atlas 2: distribution, abundance and change. Barcelona, Spain: European Bird Census Council (EBCC) and Lynx Edicions.

Ziolkowski D Jr, Lutmerding M, Aponte V, Hudson MA. 2022. Release - North American Breeding Bird Survey Dataset (1966-2021). (10.5066/P97WAZE5) DOI

Burnett J, Wszola L, Palomo-Muñoz G. 2019. bbsAssistant: an R package for downloading and handling data and information from the North American Breeding Bird Survey. J. Open Source Softw. 4, 1768. (10.21105/joss.01768) DOI

Sofaer HR, Jarnevich CS, Flather CH. 2018. Misleading prioritizations from modelling range shifts under climate change. Glob. Ecol. Biogeogr. 27, 658-666. (10.1111/geb.12726) DOI

Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the Earth's land surface areas. Sci. Data 4, 170122. (10.1038/sdata.2017.122) PubMed DOI PMC

Booth TH. 2018. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral. Ecol. 43, 852-860. (10.1111/aec.12628) DOI

Hijmans RJ, Phillips S, Leathwick J, Elith J. 2017. dismo: species distribution modeling. See https://CRAN.R-project.org/package=dismo.

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027. (10.1890/13-1917.1) DOI

Guisan A, Thuiller W, Zimmermann NE. 2017. Habitat suitability and distribution models with applications in R. Cambridge, UK: Cambridge University Press.

BirdLife International and Handbook of the Birds of the World. 2022. Bird species distribution maps of the world, version 2022.2. See http://datazone.birdlife.org/species/requestdis.

Broennimann O, Cola VD, Guisan A. 2022. ecospat: spatial ecology miscellaneous methods. R package version 3.4. See https://CRAN.R-project.org/package=ecospat.

Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344-1348. (10.1126/science.1215933) PubMed DOI

Schoener TW. 1968. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704-726. (10.2307/1935534) DOI

Tobias JA, et al. 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597. (10.1111/ele.13898) PubMed DOI

Laube I, Graham CH, Böhning-Gaese K. 2015. Niche availability in space and time: migration in Sylvia warblers. J. Biogeogr. 42, 1896-1906. (10.1111/jbi.12565) DOI

Zurell D, Gallien L, Graham CH, Zimmermann NE. 2018. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459-1468. (10.1111/jbi.13351) DOI

Oksanen J, et al. . 2022. vegan: community ecology package. See https://CRAN.R-project.org/package=vegan.

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The global diversity of birds in space and time. Nature 491, 444-448. (10.1038/nature11631) PubMed DOI

Ho LST, Ane C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397-408. (10.1093/sysbio/syu005) PubMed DOI

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. (10.1038/44766) PubMed DOI

Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinf. 8, 25. (10.1186/1471-2105-8-25) PubMed DOI PMC

Stephens PA, et al. 2016. Consistent response of bird populations to climate change on two continents. Science 352, 84-87. (10.1126/science.aac4858) PubMed DOI

Marjakangas E-L, et al. 2023. Ecological barriers mediate spatiotemporal shifts of bird communities at a continental scale. Proc. Natl Acad. Sci. USA 120, e2213330120. (10.1073/pnas.2213330120) PubMed DOI PMC

Devictor V, Julliard R, Couvet D, Jiguet F. 2008. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743-2748. (10.1098/rspb.2008.0878) PubMed DOI PMC

La Sorte FA, Jetz W. 2012. Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 81, 914-925. (10.1111/j.1365-2656.2012.01958.x) PubMed DOI

Schippers P, Verboom J, Vos CC, Jochem R. 2011. Metapopulation shift and survival of woodland birds under climate change: will species be able to track? Ecography 34, 909-919. (10.1111/j.1600-0587.2011.06712.x) DOI

Massimino D, Johnston A, Pearce-Higgins JW. 2015. The geographical range of British birds expands during 15 years of warming. Bird Study 62, 523-534. (10.1080/00063657.2015.1089835) DOI

Haddou Y, Mancy R, Matthiopoulos J, Spatharis S, Dominoni DM. 2022. Widespread extinction debts and colonization credits in United States breeding bird communities. Nat. Ecol. Evol. 6, 324-331. (10.1038/s41559-021-01653-3) PubMed DOI PMC

Tingley MW, Monahan WB, Beissinger SR, Moritz C. 2009. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19 637-19 643. (10.1073/pnas.0901562106) PubMed DOI PMC

Cahill AE, et al. 2013. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429-442. (10.1111/jbi.12231) DOI

Freeman BG. 2019. Lower elevation animal species do not tend to be better competitors than their higher elevation relatives. Glob. Ecol. Biogeogr. 29, 171-181. (10.1111/geb.13014) DOI

Rushing CS, Royle JA, Ziolkowski DJ Jr, Pardieck KL. 2020. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12 897-12 903. (10.1073/pnas.2000299117) PubMed DOI PMC

Paradis E, Baillie SR, Sutherland WJ, Gregory RD. 1998. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518-536. (10.1046/j.1365-2656.1998.00215.x) DOI

Couet J, Marjakangas E-L, Santangeli A, Kålås JA, Lindström Å, Lehikoinen A. 2022. Short-lived species move uphill faster under climate change. Oecologia 198, 877-888. (10.1007/s00442-021-05094-4) PubMed DOI PMC

Fandos G, Talluto M, Fiedler W, Robinson RA, Thorup K, Zurell D. 2023. Standardised empirical dispersal kernels emphasise the pervasiveness of long-distance dispersal in European birds. J. Anim. Ecol. 92, 158-170. (10.1111/1365-2656.13838) PubMed DOI

Dullinger S, et al. 2013. Europe's other debt crisis caused by the long legacy of future extinctions. Proc. Natl Acad. Sci. USA 110, 7342-7347. (10.1073/pnas.1216303110) PubMed DOI PMC

Rumpf SB, Hülber K, Wessely J, Willner W, Moser D, Gattringer A, Klonner G, Zimmermann NE, Dullinger S. 2019. Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10, 4293. (10.1038/s41467-019-12343-x) PubMed DOI PMC

Jarzyna MA, Zuckerberg B, Finley AO, Porter WF. 2016. Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landsc. Ecol. 31, 2275-2290. (10.1007/s10980-016-0399-1) DOI

Platts PJ, Mason SC, Palmer G, Hill JK, Oliver TH, Powney GD, Fox R, Thomas CD. 2019. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci. Rep. 9, 15039. (10.1038/s41598-019-51582-2) PubMed DOI PMC

Winkler K, Fuchs R, Rounsevell M, Herold M. 2021. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501. (10.1038/s41467-021-22702-2) PubMed DOI PMC

Tekwa E, Gonzalez A, Zurell D, O'Connor M. 2023. Detecting and attributing the causes of biodiversity change: needs, gaps and solutions. Phil. Trans. R. Soc. B 378, 20220181. (10.1098/rstb.2022.0181) PubMed DOI PMC

Malchow A-K, Hartig F, Reeg J, Kéry M, Zurell D. 2023. Demography–environment relationships improve mechanistic understanding of range dynamics under climate change. Phil. Trans. R. Soc. B 378, 20220194. (10.1098/rstb.2022.0194) PubMed DOI PMC

Zurell D, Schifferle K, Herrando S, Keller V, Lehikoinen A, Sattler T, Wiedenroth L. 2023. UP-macroecology/EBBA_Niche_vs_Range_shifts: v.1.1.0 (v1.1). Zenodo. (10.5281/zenodo.8403278) DOI

Zurell D, Schifferle K, Herrando S, Keller V, Lehikoinen A, Sattler T, Wiedenroth L. 2024. Range and climate niche shifts in European and North American breeding birds. Figshare. (10.6084/m9.figshare.c.7093255) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Range and climate niche shifts in European and North American breeding birds

. 2024 May 27 ; 379 (1902) : 20230013. [epub] 20240408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...