Effects of light and noise pollution on avian communities of European cities are correlated with the species' diet
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36928766
PubMed Central
PMC10020436
DOI
10.1038/s41598-023-31337-w
PII: 10.1038/s41598-023-31337-w
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- dieta MeSH
- ekosystém MeSH
- hluk * škodlivé účinky MeSH
- ptáci MeSH
- šlechtění rostlin MeSH
- urbanizace MeSH
- velkoměsta MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- velkoměsta MeSH
Urbanization affects avian community composition in European cities, increasing biotic homogenization. Anthropic pollution (such as light at night and noise) is among the most important drivers shaping bird use in urban areas, where bird species are mainly attracted by urban greenery. In this study, we collected data on 127 breeding bird species at 1349 point counts distributed along a gradient of urbanization in fourteen different European cities. The main aim was to explore the effects of anthropic pollution and city characteristics, on shaping the avian communities, regarding species' diet composition. The green cover of urban areas increased the number of insectivorous and omnivorous bird species, while slightly decreasing the overall diet heterogeneity of the avian communities. The green heterogeneity-a measure of evenness considering the relative coverage of grass, shrubs and trees-was positively correlated with the richness of granivorous, insectivorous, and omnivorous species, increasing the level of diet heterogeneity in the assemblages. Additionally, the effects of light pollution on avian communities were associated with the species' diet. Overall, light pollution negatively affected insectivorous and omnivorous bird species while not affecting granivorous species. The noise pollution, in contrast, was not significantly associated with changes in species assemblages. Our results offer some tips to urban planners, managers, and ecologists, in the challenge of producing more eco-friendly cities for the future.
Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales 28006 Madrid Spain
Department of Biology University of Turku Turku Finland
Department of Life and Environmental Sciences Bournemouth University Fern Barrow Poole 12 5BB BH UK
Department of Zoology Faculty of Science Palacky University in Olomouc Olomouc Czech Republic
Department of Zoology Faculty of Sciences University of Granada Granada Spain
Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71C 60 625 Poznan Poland
Zobrazit více v PubMed
Grimm NB, et al. Global change and the ecology of cities. Science. 2008;319:756–760. doi: 10.1126/science.1150195. PubMed DOI
Aronson MFJ, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. Lond. B. 2014;281:20133330. PubMed PMC
Morelli F, et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 2016;25:1284–1293. doi: 10.1111/geb.12486. DOI
Sol D, Bartomeus I, González-Lagos C, Pavoine S. Urbanisation and the loss of phylogenetic diversity in birds. Ecol. Lett. 2017;20:721–729. doi: 10.1111/ele.12769. PubMed DOI
Sklenicka P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy. 2016;57:694–701. doi: 10.1016/j.landusepol.2016.06.032. DOI
Schmiegelow FKA, Mönkkönen M. Habitat loss and fragmentation in dynamic landscapes: Avian perspectives from the boreal forest. Ecol. Appl. 2002;12:375–389.
McKinney ML. Urbanization, biodiversity, and conservation. Bioscience. 2002;52:883–890. doi: 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2. DOI
Sol D, et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 2020;23:962–972. doi: 10.1111/ele.13495. PubMed DOI
Phillips JN, Derryberry EP. Urban sparrows respond to a sexually selected trait with increased aggression in noise. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-25834-6. PubMed DOI PMC
Scales J, Hyman J, Hughes M. Fortune favours the aggressive: Territory quality and behavioural syndromes in song sparrows, Melospiza melodia. Anim. Behav. 2013;85:441–451. doi: 10.1016/j.anbehav.2012.12.004. DOI
Evans J, Boudreau K, Hyman J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology. 2010;116:588–595.
Robertson OJ, McAlpine C, House A, Maron M. Influence of interspecific competition and landscape structure on spatial homogenization of avian assemblages. PLoS ONE. 2013;8:e65299. doi: 10.1371/journal.pone.0065299. PubMed DOI PMC
Møller AP, Díaz M. Niche segregation, competition, and urbanization. Curr. Zool. 2018;64:145–152. doi: 10.1093/cz/zox025. PubMed DOI PMC
Díaz M, Ramos A, Concepción ED. Changing urban bird diversity: How to manage adaptively our closest relation with wildlife. Ecosistemas. 2022;31:2354. doi: 10.7818/ECOS.2354. DOI
Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W. Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J. Biogeogr. 2012;39:204–214. doi: 10.1111/j.1365-2699.2011.02581.x. DOI
McKinney ML, Lockwood JL. Biotic homogenization: A few winners replacing many losers in the nextmass extinction. Trends Ecol. Evol. 1999;14:450–453. doi: 10.1016/S0169-5347(99)01679-1. PubMed DOI
Olden JD, Rooney TP. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeogr. 2006;15:113–120. doi: 10.1111/j.1466-822X.2006.00214.x. DOI
Devictor V, et al. Defining and measuring ecological specialization. J. Appl. Ecol. 2010;47:15–25. doi: 10.1111/j.1365-2664.2009.01744.x. DOI
Oliveira Hagen E, Hagen O, Ibáñez-Álamo JD, Petchey OL, Evans KL. Impacts of urban areas and their characteristics on avian functional diversity. Front. Ecol. Evol. 2017;5:84. doi: 10.3389/fevo.2017.00084. DOI
Clavero M, Brotons L, Herrando S. Bird community specialization, bird conservation and disturbance: The role of wildfires. J. Anim. Ecol. 2011;80:128–136. doi: 10.1111/j.1365-2656.2010.01748.x. PubMed DOI
Ibáñez-Álamo JD, Rubio E, Benedetti Y, Morelli F. Global loss of avian evolutionary uniqueness in urban areas. Glob. Chang. Biol. 2016;23:2990–2998. doi: 10.1111/gcb.13567. PubMed DOI
Dominoni DM, Borniger JC, Nelson RJ. Light at night, clocks and health: from humans to wild organisms. Biol. Lett. 2016;12:20160015. doi: 10.1098/rsbl.2016.0015. PubMed DOI PMC
Hölker F, Wolter C, Perkin EK, Tockner K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010;25:681–682. doi: 10.1016/j.tree.2010.09.007. PubMed DOI
Doll CNH, Muller JP, Morley JG. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006;57:75–92. doi: 10.1016/j.ecolecon.2005.03.007. DOI
Robert KA, Lesku JA, Partecke J, Chambers B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. Lond. B. 2015;282:20151745. PubMed PMC
Bennie J, Duffy J, Davies T, Correa-Cano M, Gaston KJ. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 2015;7:2715–2730. doi: 10.3390/rs70302715. DOI
Van Geffen KG, et al. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 2015;40:401–408. doi: 10.1111/een.12202. DOI
Owens ACS, et al. Light pollution is a driver of insect declines. Biol. Conserv. 2020;241:108259. doi: 10.1016/j.biocon.2019.108259. DOI
Kempenaers B, Borgström P, Loës P, Schlicht E, Valcu M. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 2010;20:1735–1739. doi: 10.1016/j.cub.2010.08.028. PubMed DOI
Adams CA, Blumenthal A, Fernández-Juricic E, Bayne E, St Clair CC. Effect of anthropogenic light on bird movement, habitat selection, and distribution: A systematic map protocol. Environ. Evid. 2019;8:1–16. doi: 10.1186/s13750-019-0155-5. DOI
Ciach M, Fröhlich A. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst. 2017;20:547–559. doi: 10.1007/s11252-016-0613-6. DOI
Klenke R, Nordt A, Huang J. Disoriented: Birds in the modern world. In: Achternkamp U, Huebner H, Kraus H, Reisinger N, Willinghöfer J, editors. Ein ornithologisches Wundertütenkabinett. The Philosophical Farmers; 2013. pp. 1–6.
Shannon G, et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 2016;91:982–1005. doi: 10.1111/brv.12207. PubMed DOI
Francis CD, Kleist NJ, Ortega CP, Cruz A. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal. Proc. R. Soc. Lond. B. 2012;279:2727–2735. PubMed PMC
Ortega CP. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 2012;74:6–22. doi: 10.1525/om.2012.74.1.6. DOI
Francis CD, Ortega CP, Cruz A. Noise pollution changes avian communities and species interactions. Curr. Biol. 2009;19:1415–1419. doi: 10.1016/j.cub.2009.06.052. PubMed DOI
Hu Y, Cardoso GC. Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 2009;20:1268–1273. doi: 10.1093/beheco/arp131. DOI
Díaz M, Parra A, Gallardo C. Serins respond to anthropogenic noise by increasing vocal activity. Behav. Ecol. 2011;22:332–336. doi: 10.1093/beheco/arq210. DOI
Rheindt FE. The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? J. Ornithol. 2003;144:295–306.
Kareklas K, Wilson J, Kunc HP, Arnott G. Signal complexity communicates aggressive intent during contests, but the process is disrupted by noise. Biol. Lett. 2019;15:20180841. doi: 10.1098/rsbl.2018.0841. PubMed DOI PMC
Secretariat of the Convention on Biological Diversity. Cities and Biodiversity Outlook: A Global Assessment of the Links Between Urbanization, Biodiversity, and Ecosystem Services. Executive Summaryhttp://www.cbd.int/authorities/doc/cbo-1/cbd-cbo1-summary-en-f-web.pdf (2012). 10.6084/m9.figshare.99889.
Miller JR, Hobbs RJ. Conservation where people live and work. Conserv. Biol. 2002;16:330–337. doi: 10.1046/j.1523-1739.2002.00420.x. DOI
Wilson AA, et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Chang. Biol. 2021;27:3987–4004. doi: 10.1111/gcb.15663. PubMed DOI
Morelli F, et al. Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe. Sci. Total Environ. 2021;795:148874. doi: 10.1016/j.scitotenv.2021.148874. PubMed DOI
Schoeman MC. Light pollution at stadiums favors urban exploiter bats. Anim. Conserv. 2016;19:120–130. doi: 10.1111/acv.12220. DOI
Holzhauer SIJ, et al. Out of the dark: Establishing a large-scale field experiment to assess the effects of artificial light at night on species and food webs. Sustainability. 2015;7:15593–15616. doi: 10.3390/su71115593. DOI
Donners M, et al. Colors of attraction: Modeling insect flight to light behavior. J. Exp. Zool. A. 2018;329:434–440. doi: 10.1002/jez.2188. PubMed DOI
Sanders D, et al. Artificial nighttime light changes aphid-parasitoid population dynamics. Sci. Rep. 2015;5:15232. doi: 10.1038/srep15232. PubMed DOI PMC
Nankoo S, Raymond S, Galvez-Cloutier R. The impact of the Jacques Cartier bridge illumination on the food chain: From insects to predators. Community Ecol. 2019;20:172–180. doi: 10.1556/168.2019.20.2.7. DOI
McClure CJW, Ware HE, Carlisle J, Kaltenecker G, Barber JR. An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proc. R. Soc. B Biol. Sci. 2013;280:20132290. doi: 10.1098/rspb.2013.2290. PubMed DOI PMC
Montgomerie R, Weatherhead PJ. How robins find worms. Anim. Behav. 1997;54:143–151. doi: 10.1006/anbe.1996.0411. PubMed DOI
Burger J, Gochfeld M. Effects of ecotourists on bird behaviour at Loxahatchee National Wildlife Refuge. Florida. Environ. Conserv. 1998;25:13–21. doi: 10.1017/S0376892998000058. DOI
Manzanares Mena L, Macías Garcia C. Songbird community structure changes with noise in an urban reserve. J. Urban Ecol. 2018;4:1–8. doi: 10.1093/jue/juy022. DOI
Dominoni DM. The effects of light pollution on biological rhythms of birds: An integrated, mechanistic perspective. J. Ornithol. 2015;156:409–418. doi: 10.1007/s10336-015-1196-3. DOI
Ibáñez-Álamo JD, et al. Biodiversity within the city: Effects of land sharing and land sparing urban development on avian diversity. Sci. Total Environ. 2019;707:135477. doi: 10.1016/j.scitotenv.2019.135477. PubMed DOI
Callaghan CT, Benedetti Y, Wilshire JH, Morelli F. Avian trait specialization is negatively associated with urban tolerance. Oikos. 2020;129:1541–1551. doi: 10.1111/oik.07356. DOI
Tratalos J, et al. Bird densities are associated with household densities. Glob. Chang. Biol. 2007;13:1685–1695. doi: 10.1111/j.1365-2486.2007.01390.x. DOI
Perillo A, et al. Anthropogenic noise reduces bird species richness and diversity in urban parks. Ibis. 2017;159:638–646. doi: 10.1111/ibi.12481. DOI
Carral-Murrieta CO, García-Arroyo M, Marín-Gómez OH, Sosa-López JR, Macgregor-Fors I. Noisy environments: Untangling the role of anthropogenic noise on bird species richness in a Neotropical City. Avian Res. 2020;11:32. doi: 10.1186/s40657-020-00218-5. DOI
Thaweepworadej P, Evans KL. Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. Ecol. Appl. 2022;32:e2586. doi: 10.1002/eap.2586. PubMed DOI PMC
Gaston KJ, Davies TW, Bennie J, Hopkins J. Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012;49:1256–1266. doi: 10.1111/j.1365-2664.2012.02212.x. PubMed DOI PMC
Hedblom, M., Knez, I. & Gunnarsson, B. Bird diversity improves the well-being of city residents. in Ecology and Conservation of Birds in Urban Environments, 287–306 (2017). 10.1007/978-3-319-43314-1_15.
Callaghan CT, Major RE, Lyons MB, Martin JM, Kingsford RT. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere. 2018;9:e02347. doi: 10.1002/ecs2.2347. DOI
Escobar-Ibáñez JF, Rueda-Hernández R, MacGregor-Fors I. The Greener the Better! Avian communities across a Neotropical gradient of urbanization density. Front. Ecol. Evol. 2020;8:500791. doi: 10.3389/fevo.2020.500791. DOI
Sushinsky JR, Rhodes JR, Possingham HP, Gill TK, Fuller RA. How should we grow cities to minimize their biodiversity impacts? Glob. Chang. Biol. 2013;19:401–410. doi: 10.1111/gcb.12055. PubMed DOI
Morelli F, et al. Flight initiation distance and refuge in urban birds. Sci. Total Environ. 2022;842:156939. doi: 10.1016/j.scitotenv.2022.156939. PubMed DOI
Hammoud R, et al. Smartphone: Based ecological momentary assessment reveals mental health benefits of birdlife. Sci. Rep. 2022;12:17589. doi: 10.1038/s41598-022-20207-6. PubMed DOI PMC
Elmqvist T, et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003;1:488–494. doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2. DOI
Morelli F, Benedetti Y, Jerzak L, Kubecka J, Delgado JD. Combining the potential resilience of avian communities with climate change scenarios to identify areas of conservation concern. Ecol. Indic. 2020;116:106509. doi: 10.1016/j.ecolind.2020.106509. DOI
Bibby CJ, Burgess ND, Hill DA. Bird Census Techniques. Academic Press; 1992.
Voříšek P, Klvaňová A, Wotton S, Gregory RD. A Best Practice Guide for Wild Bird Monitoring Schemes. Pan-European Common Bird Monitoring Scheme (PECMBS); 2010.
Kéry M, Royle JA, Schmid H. Modeling avian abundance from replicated counts using binomial mixture models. Ecol. Appl. 2005;15:1450–1461. doi: 10.1890/04-1120. DOI
Morelli F, et al. Top ten birds indicators of high environmental quality in European cities. Ecol. Indic. 2021;133:108397. doi: 10.1016/j.ecolind.2021.108397. DOI
Benedetti Y, et al. EVI and NDVI as proxies for multifaceted avian diversity in urban areas. Ecol. Appl. 2023;1:e2808. doi: 10.1002/eap.2808. PubMed DOI
Morelli F, et al. Detection rate of bird species and what it depends on: Tips for field surveys. Front. Ecol. Evol. 2022;9:671492. doi: 10.3389/fevo.2021.671492. DOI
Magurran A. Measuring Biological Diversity. Blackwell Science; 2004.
Tobias JA, et al. AVONET: Morphological, ecological and geographical data for all birds. Ecol. Lett. 2022;25:581–597. doi: 10.1111/ele.13898. PubMed DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Charbonnier YM, et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia. 2016;182:529–537. doi: 10.1007/s00442-016-3671-9. PubMed DOI
Hurlbert AH. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 2004;7:714–720. doi: 10.1111/j.1461-0248.2004.00630.x. DOI
Díaz M, et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE. 2013;8:e64634. doi: 10.1371/journal.pone.0064634. PubMed DOI PMC
Samia DSM, et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 2017;5:66. doi: 10.3389/fevo.2017.00066. DOI
Box GEP, Cox DR. An analysis of transformations. J. R. Stat. Soc. Ser. B. 1964;26:211–252.
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4: R Package. (2014).
Fox J, Weisberg S. An R Companion to Applied Regression. SAGE Publications Inc; 2019.
Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology. 2003;84:2809–2815. doi: 10.1890/02-3114. DOI
Bartoń, K. MuMIn: Multi-Model Inference, R Package. (2013).
R Development Core Team. R: A Language and Environment for Statistical Computing. (2021).