Thresholds for adding degraded tropical forest to the conservation estate
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39020163
PubMed Central
PMC11269177
DOI
10.1038/s41586-024-07657-w
PII: 10.1038/s41586-024-07657-w
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biomasa MeSH
- lesnictví * statistika a číselné údaje MeSH
- lesy * MeSH
- stromy * klasifikace růst a vývoj MeSH
- tropické klima * MeSH
- zachování přírodních zdrojů * metody statistika a číselné údaje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Malajsie MeSH
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
Asian School of the Environment Nanyang Technological University Singapore Singapore
Borneo Futures Bandar Seri Begawan Brunei
Centre for Ecology and Conservation School of Biosciences University of Exeter Penryn UK
Centre for Planetary Health and Food Security Griffith University Brisbane Queensland Australia
Conservation and Fisheries Directorate Ascension Island Government Georgetown St Helena Island
Danau Girang Field Centre Kinabatangan Malaysia
Department of Biological Sciences National University of Singapore Singapore Singapore
Department of Biology University of Oxford Oxford UK
Department of Biology Vrije Universiteit Brussel Brussels Belgium
Department of Biology York University Toronto Ontario Canada
Department of Botany Faculty of Science Palacký University Olomouc Czech Republic
Department of Botany University of Otago Dunedin New Zealand
Department of Geography University of Exeter Exeter UK
Department of Life Sciences The Natural History Museum London London UK
Department of Mathematics Imperial College London London UK
Department of Plant Sciences University of Cambridge Cambridge UK
Department of Soil and Crop Sciences Colorado State University Fort Collins CO USA
Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA
Department of Wood and Forest Science Laval University Quebec Quebec Canada
Department of Zoology and Entomology University of Pretoria Pretoria South Africa
Department of Zoology The David Attenborough Building University of Cambridge Cambridge UK
Division of Biological Sciences University of Montana Missoula MT USA
Dyson School of Design Engineering Imperial College London London UK
EcoHealth Alliance New York NY USA
Ecology and Evolutionary Biology School of Biosciences University of Sheffield Sheffield UK
Faculty of Biology Adam Mickiewicz University Poznań Poland
Faculty of Forestry and Environment Universiti Putra Malaysia Seri Kembangan Malaysia
Faculty of Health Sciences University of Bristol Bristol UK
Faculty of Science University of Alberta Edmonton Alberta Canada
Fauna and Flora International Hanoi Vietnam
Field Programmes Department Durrell Wildlife Conservation Trust La Profonde Rue Jersey
Forest Research Centre Sabah Forestry Department Sandakan Malaysia
Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia
Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Malaysia
Institute of Microbiology Department of Biology ETH Zürich Zurich Switzerland
Institute of Zoology Zoological Society of London London UK
Kinabatangan Orang Utan Conservation Programme Kota Kinabalu Malaysia
Lee Kong Chian Natural History Museum National University of Singapore Singapore Singapore
Malaysian Nature Society Kuala Lumpur Malaysia
Marine Resources Unit Department of Environment Grand Cayman Cayman Islands
Naturalis Biodiversity Centre Leiden The Netherlands
Royal Botanic Gardens Edinburgh Edinburgh UK
Royal Botanic Gardens Kew Richmond London UK
Royal Botanic Gardens Kew Wakehurst Haywards Heath UK
Sabah State Museum Kota Kinabalu Malaysia
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological Sciences The University of Hong Kong Hong Kong Hong Kong
School of Biological Sciences University of Aberdeen Aberdeen UK
School of Biological Sciences University of Bristol Bristol UK
School of Biological Sciences University of East Anglia Norwich UK
School of Biosciences Cardiff University Cardiff UK
School of Biosciences The University of Sheffield Sheffield UK
School of Biosciences University of Nottingham Loughborough UK
School of Environmental and Natural Sciences Griffith University Brisbane Queensland Australia
School of Environmental Sciences University of East Anglia Norwich UK
School of Geosciences University of Edinburgh Edinburgh UK
School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
School of Physiology Pharmacology and Neuroscience University of Bristol Bristol UK
School of Science Monash University Subang Jaya Malaysia
South East Asia Rainforest Research Partnership Danum Valley Field Centre Lahad Datu Malaysia
The Nelson Institute for Environmental Studies University of Wisconsin Madison Madison WI USA
Zobrazit více v PubMed
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature612, 707–713 (2022). 10.1038/s41586-022-05523-1 PubMed DOI PMC
Edwards, D. P. et al. Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc. R. Soc. B278, 82–90 (2010). PubMed PMC
Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol.23, 1406–1417 (2009). 10.1111/j.1523-1739.2009.01338.x PubMed DOI
Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett.12, 561–582 (2009). 10.1111/j.1461-0248.2009.01294.x PubMed DOI
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature478, 378–381 (2011). 10.1038/nature10425 PubMed DOI
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature535, 144–147 (2016). 10.1038/nature18326 PubMed DOI
Ferraz, A. et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett.13, 095001 (2018).10.1088/1748-9326/aad782 DOI
Wearn, O. R. et al. Estimating animal density for a community of species using information obtained only from camera-traps. Methods Ecol. Evol.13, 2248–2261 (2022).10.1111/2041-210X.13930 DOI
Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R. & Emerson, R. A contemporary assessment of change in humid tropical forests. Conserv. Biol.23, 1386–1395 (2009). 10.1111/j.1523-1739.2009.01333.x PubMed DOI
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour.39, 125–159 (2014).10.1146/annurev-environ-030713-155141 DOI
Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol.24, 1893–1898 (2014). 10.1016/j.cub.2014.06.065 PubMed DOI
Martin, P. A., Newton, A. C., Pfeifer, M., Khoo, M. & Bullock, J. M. Impacts of tropical selective logging on carbon storage and tree species richness: a meta-analysis. For. Ecol. Manag.356, 224–233 (2015).10.1016/j.foreco.2015.07.010 DOI
Reynolds, G., Payne, J., Sinun, W., Mosigil, G. & Walsh, R. P. D. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Phil. Trans. R. Soc. B366, 3168–3176 (2011). 10.1098/rstb.2011.0154 PubMed DOI PMC
Brooks, T. M. et al. Global biodiversity conservation priorities. Science313, 58–61 (2006). 10.1126/science.1127609 PubMed DOI
Schultz, B. et al. Recognizing the equity implications of restoration priority maps. Environ. Res. Lett.17, 114019 (2022).10.1088/1748-9326/ac9918 DOI
Deere, N. J. et al. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proc. Natl Acad. Sci. USA117, 26254–26262 (2020). 10.1073/pnas.2001823117 PubMed DOI PMC
Costa, F. R. C. & Magnusson, W. E. Effects of selective logging on the diversity and abundance of flowering and fruiting understory plants in a central Amazonian forest. Biotropica35, 103–114 (2003).
Brodie, J. F. et al. Correlation and persistence of hunting and logging impacts on tropical rainforest mammals. Conserv. Biol.29, 110–121 (2015). 10.1111/cobi.12389 PubMed DOI
Barlow, J., Mestre, L. A. M., Gardner, T. A. & Peres, C. A. The value of primary, secondary and plantation forests for Amazonian birds. Biol. Conserv.136, 212–231 (2007).10.1016/j.biocon.2006.11.021 PubMed DOI
Widodo, E. S., Naito, T., Mohamed, M. & Hashimoto, Y. Effects of selective logging on the arboreal ants of a Bornean rainforest. Entomol. Sci.7, 341–349 (2004).10.1111/j.1479-8298.2004.00082.x DOI
Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA104, 18555–18560 (2007). 10.1073/pnas.0703333104 PubMed DOI PMC
Lawton, J. H. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature391, 72–76 (1998).10.1038/34166 DOI
Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science345, 1041–1045 (2014). 10.1126/science.1255768 PubMed DOI
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Comm.6, 6836 (2015).10.1038/ncomms7836 PubMed DOI PMC
Harrison, M. L. K. & Banks-Leite, C. Edge effects on trophic cascades in tropical rainforests. Conserv. Biol.34, 977–987 (2020). 10.1111/cobi.13438 PubMed DOI
Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Phil. Trans. R. Soc. B366, 3292–3302 (2011). 10.1098/rstb.2011.0049 PubMed DOI PMC
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv.1, e1500052 (2015). 10.1126/sciadv.1500052 PubMed DOI PMC
Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol.201, 187–195 (2015). 10.1016/j.agrformet.2014.11.010 PubMed DOI PMC
Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol.221, 1853–1865 (2019). 10.1111/nph.15444 PubMed DOI
Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature547, 441–444 (2017). 10.1038/nature23285 PubMed DOI
Cusack, J. J., Wearn, O. R., Bernard, H. & Ewers, R. M. Influence of microhabitat structure and disturbance on detection of native and non-native murids in logged and unlogged forests of northern Borneo. J. Trop. Ecol.31, 25–35 (2015).10.1017/S0266467414000558 DOI
Döbert, T. F., Webber, B. L., Sugau, J. B., Dickinson, K. J. M. & Didham, R. K. Logging, exotic plant invasions, and native plant reassembly in a lowland tropical rain forest. Biotropica50, 254–265 (2018).10.1111/btp.12521 DOI
Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature551, 187–191 (2017). 10.1038/nature24457 PubMed DOI PMC
Wearn, O. R. et al. Mammalian species abundance across a gradient of tropical land-use intensity: a hierarchical multi-species modelling approach. Biol. Conserv.212, 162–171 (2017).10.1016/j.biocon.2017.05.007 DOI
Deere, N. J. et al. Implications of zero-deforestation commitments: forest quality and hunting pressure limit mammal persistence in fragmented tropical landscapes. Conserv. Lett.13, e12701 (2020).10.1111/conl.12701 DOI
Rosoman, G., Sheun, S. S., Opal, C., Anderson, P. & Trapshah, R. The HCS Approach Toolkit Version 2.0. (HCS Approach Steering Group, 2017).
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Comm.11, 4978 (2020).10.1038/s41467-020-18728-7 PubMed DOI PMC
Carreño-Rocabado, G. et al. Effects of disturbance intensity on species and functional diversity in a tropical forest. J. Ecol.100, 1453–1463 (2012).10.1111/j.1365-2745.2012.02015.x DOI
Pfeifer, M. et al. Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environ. Res. Lett.10, 044019 (2015).10.1088/1748-9326/10/4/044019 DOI
Williams, J. J. & Newbold, T. Vertebrate responses to human land use are influenced by their proximity to climatic tolerance limits. Divers. Distrib.27, 1308–1323 (2021).
Orme, C. D. L. et al. Distance to range edge determines sensitivity to deforestation. Nat. Ecol. Evol.3, 886–891 (2019). 10.1038/s41559-019-0889-z PubMed DOI
Pinard, M. A. & Putz, F. E. Retaining forest biomass by reducing logging damage. Biotropica28, 278–295 (1996).10.2307/2389193 DOI
Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science369, 838–841 (2020). 10.1126/science.aay4490 PubMed DOI
van Oosterzee, P., Liu, H. & Preece, N. D. Cost benefits of forest restoration in a tropical grazing landscape: Thiaki rainforest restoration project. Glob. Environ. Change63, 102105 (2020).10.1016/j.gloenvcha.2020.102105 DOI
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature520, 45–50 (2015). 10.1038/nature14324 PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computinghttp://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI
Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw.34, 1–24 (2010).
Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A grammar of data manipulation. R package version 1.1.4 https://cran.r-project.org/web/packages/dplyr/index.html (2021).
Bates, D., Martin, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).10.18637/jss.v067.i01 DOI
Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News2, 7–10 (2002).
Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Soft.40, 1–25 (2011).10.18637/jss.v040.i03 DOI
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).
Schauberger, P. & Walker, A. openxlsx: Read, write and edit xlsx files. R package version 4.2.5.2 https://cran.r-project.org/web/packages/openxlsx/index.html (2021).
Hvitfeldt, E. paletteer: Comprehensive collection of color palettes. R package version 1.6.0 https://cran.r-project.org/web/packages/paletteer/index.html (2021).
Grosjean, P. & Ibanez, F. pastecs: Package for analysis of space-time ecological series. R package version 1.4.2 https://cran.r-project.org/web/packages/pastecs/index.html (2018).
Urbanek, S. png: Read and write PNG images. R package version 0.1-8 https://cran.r-project.org/web/packages/png/index.html (2013).
Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.6-26 https://cran.r-project.org/web/packages/raster/index.html (2021).
Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw.21, 1–20 (2007).10.18637/jss.v021.i12 DOI
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ data abstraction library. R package version 1.6-7 https://cran.r-project.org/src/contrib/Archive/rgdal (2021).
Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine - Open Source (‘GEOS’). R package version 0.6-4 https://cran.r-project.org/src/contrib/Archive/rgeos (2020).
Aldersley, A. & Orme, C. D. L. safedata: Interface to data from the SAFE Project. GitHub https://imperialcollegelondon.github.io/safedata/ (2019).
Wickham, H. & Seidel, D. P. scales: Scale functions for visualization. R package version 1.3.0 https://cran.r-project.org/web/packages/scales/index.html (2020).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J.10, 439–446 (2018).10.32614/RJ-2018-009 DOI
Bivand, R. & Yu, D. spgwr: Geographically weighted regression. R package version 0.6-36. https://cran.r-project.org/web/packages/spgwr/index.html (2020).
Wickham, H. stringr: Simple, consistent wrappers for common string operations. R package version 1.5.1 https://cran.r-project.org/web/packages/stringr/index.html (2019).
Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: an R package for testing for structural change in linear regression models. J. Stat. Softw.7, 1–38 (2002).10.18637/jss.v007.i02 DOI
Both, S. et al. Functional traits of tree species in old-growth and selectively logged forest. Zenodo 10.5281/zenodo.3247631 (2019).
Bishop, T. & Ewers, R. Abundance and morphometrics of ant genera. Zenodo 10.5281/zenodo.1198839 (2018).
Bernard, H., Hee, K. B. & Wong, A. Importance of riparian reserves and other forest fragments for small mammal diversity in disturbed and converted forest landscapes. Zenodo 10.5281/zenodo.3908128 (2020).
Brant, H., Mumford, J., Ewers, R. & Benedick, S. Mosquito data at SAFE 2012-2014. Zenodo 10.5281/zenodo.1198846 (2018).
Carpenter, D. et al. The Maliau Quantitative Inventory. Zenodo 10.5281/zenodo.5562260 (2021).
Chapman, P. M. & Davison, C. Small mammals at forest-oil palm edges raw datasets. Zenodo 10.5281/zenodo.2579792 (2019).
Deere, N. J. Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Zenodo 10.5281/zenodo.4010757 (2020). PubMed PMC
Döbert, T., Webber, B. L., Sugau, J. B., Dickinson, K. J. M. & Didham, R. K. Landuse change and species invasion. Zenodo 10.5281/zenodo.2536270 (2019).
Drinkwater, R., Drinkwater, R., Swinfield, T. & Deere, N. J. Occurrence of blood feeding terrestrial leeches in a degraded forest ecosystem. Zenodo 10.5281/zenodo.3476542 (2019).
Ewers, R. M. & Gray, R. The importance of vertebrates in regulating insect herbivory pressure along a gradient of logging intensity in Sabah, Borneo. Zenodo 10.5281/zenodo.3975973 (2020).
Faruk, A. Leaf litter amphibian communities. Zenodo 10.5281/zenodo.1303010 (2018).
Fayle, T. M., Yusah, K. M., Ewers, R. M. & Boyle, M. J. W. How does forest conversion and fragmentation affect ant communities and the ecosystem processes that they mediate? Zenodo 10.5281/zenodo.3876227 (2020).
Fraser, A. et al. Amphibian survey of riparian buffer zones at SAFE Project, Borneo. Zenodo 10.5281/zenodo.3973551 (2020).
Fraser, A., Bernard, H., Mackintosh, E., Ewers, R. M. & Banks-Leite, C. Effects of habitat modification on a tritrophic cascade in a lowland tropical rainforest. Zenodo 10.5281/zenodo.3981222 (2020).
Gray, R., Gill, R. & Ewers, R. The role of competition in structuring ant community composition across a tropical forest disturbance gradient. Zenodo 10.5281/zenodo.1198302 (2018).
Gray, R., Slade, E., Chung, A. & Lewis, O. Riparian_Invertebrate_Movement_Data_SAFE. Zenodo 10.5281/zenodo.3475406 (2019).
Gregory, N., Ewers, R. M., Cator, L. & Chung, A. Vectorial capacity of Aedes albopictus across an environmental gradient. Zenodo 10.5281/zenodo.3994260 (2020).
Hardwick, J. et al. The effects of habitat modification on the distribution and feeding ecology of Orthoptera 2015. Zenodo 10.5281/zenodo.4275386 (2020).
Hemprich-Bennett, D. et al. Impacts of rainforest degradation on the diets of the insectivorous bats of Sabah. Zenodo 10.5281/zenodo.3247465 (2019).
Wearn, O. R., Carbone, C., Rowcliffe, J. M., Bernard, H. & Ewers, R. M. Grain-dependent responses of mammalian diversity to land use and the implications for conservation set-aside. Ecol. Appl.26, 1409–1420 (2016). 10.1890/15-1363 PubMed DOI
Heon, S., Chapman, P. M., Wearn, O. R., Berhard, H. & Ewers, R. M. Core SAFE project small mammal trapping data. Zenodo 10.5281/zenodo.3955050 (2020).
Heon, S., Chapman, P., Bernard, H. & Ewers, R. M. Do logging roads impede small mammal movement In Borneo’s tropical rainforests? Zenodo 10.5281/zenodo.1304117 (2018).
Jebrail, E. W., Dahwood, M., Fikri, A. H. & Yahya, B. The effects of progressive land use changes on the distribution, abundance and behavior of vector mosquitoes in Sabah, Malaysia. Zenodo 10.5281/zenodo.3475408 (2019).
Kendall, A. & Ewers, R. M. The effect of forest modification on ectoparasite density and diversity. Zenodo 10.5281/zenodo.1237736 (2018).
Konopik, O. Functional diversity of amphibian assemblages along a disturbance gradient. Zenodo 10.5281/zenodo.1995439 (2018).
Lane Shaw, I. & Ewers, R. M. Microclimate change, forest disturbance and twig-dwelling ants. Zenodo 10.5281/zenodo.1237732 (2018).
Layfield, H. Otter qPCR data at SAFE. Zenodo 10.5281/zenodo.1198475 (2018).
Luke, S. H. et al. Freshwater invertebrates - diversity and function of stream macroinvertebrates: effects of habitat conversion and strategies for conservation. Zenodo 10.5281/zenodo.5710509 (2021).
Luke, S. Ant and termite assemblages along a tropical forest disturbance gradient in Sabah, Malaysia: a study of co-variation and trophic interactions. Zenodo 10.5281/zenodo.1198833 (2018).
Mackintosh, E., Fraser, A., Banks-Leite, C., Ewers, R. M. & Chung, A. Effect of vertebrate exclusion on ecosystem functioning. Zenodo 10.5281/zenodo.4630980 (2021).
Maunsell, S. et al. Variation in arthropod responses to tropical landscape transformation: moths 2014. Zenodo 10.5281/zenodo.4247169 (2020).
Maunsell, S. et al. Variation in arthropod responses to tropical landscape transformation: spiders 2015. Zenodo 10.5281/zenodo.4139684 (2020).
Mitchell, S. L. et al. Spatial replication and habitat context matters for assessments of tropical biodiversity using acoustic indices. Ecol. Indic.119, 106717 (2020).10.1016/j.ecolind.2020.106717 DOI
Mullin, K. et al. Bat activity in riparian reserves in forest and oil palm plantations. Zenodo 10.5281/zenodo.3971012 (2020).
Noble, C. Impacts of habitat disturbance on population health of Bornean frogs. Zenodo 10.5281/zenodo.3485086 (2019).
Pianzin, A., Wong, A., Bernard, H. & Struebig, M. Investigating the distribution and occupancy of otter species across human-modified landscapes in Sabah, Malaysia. Zenodo 10.5281/zenodo.3897377 (2020).
Pillay, R., Fletcher, R. J., Sieving, K. E., Udell, B. J. & Bernard, H. Bioacoustic monitoring reveals shifts in breeding songbird populations and singing behaviour with selective logging in tropical forests. Zenodo 10.5281/zenodo.3366104 (2019).
Psomas, E. Myrmecophilous pselaphine beetles in tropical forests. Zenodo 10.5281/zenodo.1400562 (2018).
Qie, L., Telford, E., Nilus, R. & Ewers, R. Increased importance of terrestrial vertebrate seed dispersal in tropical logged forests. Zenodo 10.5281/zenodo.3901735 (2020).
Qie, L., Telford, E., Massam, M. & Ewers, R. Impact of El Nino drought on seedling dynamics. Zenodo 10.5281/zenodo.1400564 (2018).
Sawang, A., Sharp, A., Chung, A., Ewers, R. & Barclay, M. Core - invert biomass + ordinal sort. Zenodo 10.5281/zenodo.3354067 (2019).
Seaman, D., Struebig, M., Bernard, H., Ancrenaz, M. & Ewers, R. M. The effect of tropical forest modification on primate population density and diversity. Zenodo 10.5281/zenodo.5109892 (2021).
Sethi, S. et al. Avifaunal and herpetofaunal point counts with recorded acoustic data. Zenodo 10.5281/zenodo.3742834 (2020).
Shapiro, D. & Ewers, R. M. Investigating temperature tolerance in mosquito disease vectors across a land-use gradient. Zenodo 10.5281/zenodo.1237720 (2018).
Sharp, A., Barclay, M., Chung, A. & Ewers, R. Beetle diversity. Zenodo 10.5281/zenodo.1323504 (2018).
Slade, E. M., Bush, E., Mann, D. J. & Chung, A. Y. C. Dung beetle community and dung removal data 2011. Zenodo 10.5281/zenodo.3247492 (2019).
Slade, E. M., Chung, A. Y. C. & Parrett, J. Dung beetle community data 2018. Zenodo 10.5281/zenodo.3832076 (2020).
Slade, E. M., Milne, S., Mann, D. J., Chung, A. Y. C. & Parrett, J. Dung beetle community and dung removal data 2015. Zenodo 10.5281/zenodo.3247494 (2019).
Slade, E. M., Milne, S., Chung, A. Y. C., Williamson, J. & Parrett, J. Dung beetle community and dung removal data 2015. Zenodo 10.5281/zenodo.3906118 (2020).
Slade, E. M., Williamson, J., Chung, A. Y. C., Parrett, J. & Heroin, H. Dung beetle community 2017/18. Zenodo 10.5281/zenodo.3906441 (2020).
Turner, E. C. et al. Tree census data from the SAFE Project 2011-12. Zenodo 10.5281/zenodo.5729342 (2021).
Twining, J. & Ewers, R. M. Terrestrial scavenger trapping data. Zenodo 10.5281/zenodo.1237731 (2018).
Vollans, M., Cator, L., Ewers, R. M. & Chung, A. Investigating the impact of human settlements upon the availability of larval habitats and Aedes albopictus population. Zenodo 10.5281/zenodo.3929764 (2020).
Wilkinson, C. et al. All fish catch data at the SAFE project 2011-2017. Zenodo 10.5281/zenodo.3982665 (2020).
Williamson, J. Movement patterns of invertebrates in tropical rainforest. Zenodo 10.5281/zenodo.1487595 (2018).
Ewers, R. M. et al. Variable responses of individual species to tropical forest degradation. Preprint at bioRxiv10.1101/2024.02.09.576668 (2024).
Banks-Leite, C., Larrosa, C., Carrasco, L. R., Tambosi, L. R. & Milner-Gulland, E. J. The suggestion that landscapes should contain 40% of forest cover lacks evidence and is problematic. Ecol. Lett.24, 1112–1113 (2021). 10.1111/ele.13668 PubMed DOI
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology90, 2648 (2009).10.1890/08-1494.1 DOI
Wilkinson, C. & Ewers, R. M. Fish functional diversity traits. Zenodo 10.5281/zenodo.1237719 (2018).
Vigus, H. Coleoptera functional and morphological traits. Zenodo 10.5281/zenodo.3908249 (2020).
Inger, R. F., Stuebing, R. B., Grafe, T. U. & Dehling, J. M. A Field Guide to the Frogs of Borneo (Natural History Publications Borneo, 2017).
Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiv. Conserv.23, 2817–2832 (2014).10.1007/s10531-014-0750-2 DOI
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett.25, 581–597 (2022). 10.1111/ele.13898 PubMed DOI
The IUCN Red List of Threatened Species (IUCN, 2021).
Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Func. Ecol.31, 444–457 (2017).10.1111/1365-2435.12722 DOI
Tobias, J. AVONET: a global database of bird traits. Ecol. Lett. 25, 581–597 (2022).
Santini, L., Benítez-López, A., Ficetola, G. F. & Huijbregts, M. A. J. Length–mass allometries in amphibians. Integr. Zool.13, 36–45 (2018). 10.1111/1749-4877.12268 PubMed DOI
Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett.21, 989–1000 (2018). 10.1111/ele.12964 PubMed DOI PMC
Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences15, 3811–3830 (2018).10.5194/bg-15-3811-2018 DOI
Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv.217, 289–310 (2018).10.1016/j.biocon.2017.10.020 DOI
Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal.28, 281–298 (1996).10.1111/j.1538-4632.1996.tb00936.x DOI
Banks-Leite, C., Ewers, R. M. & Metzger, J. P. Unravelling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology93, 2560–2569 (2012). 10.1890/11-2054.1 PubMed DOI
Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv.226, 9–15 (2018).10.1016/j.biocon.2018.07.022 DOI
Ewers, R. M. & Didham, R. K. Continuous response functions for quantifying the strength of edge effects. J. Appl. Ecol.43, 527–536 (2006).10.1111/j.1365-2664.2006.01151.x DOI
Banks-Leite, C. et al. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J. Appl. Ecol.51, 849–859 (2014). 10.1111/1365-2664.12272 PubMed DOI PMC
Powers, S. M. & Hampton, S. E. Open science, reproducibility, and transparency in ecology. Ecol. Appl.29, e01822 (2019). 10.1002/eap.1822 PubMed DOI
Stouffer, P. C. et al. Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol. Lett.24, 186–195 (2021). 10.1111/ele.13628 PubMed DOI
Riutta, T. et al. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob. Change Biol.24, 2913–2928 (2018).10.1111/gcb.14068 PubMed DOI
Struebig, M. et al. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Adv. Ecol. Res.48, 183–224 (2013).10.1016/B978-0-12-417199-2.00003-3 DOI
Kretzschmar, P. et al. The catastrophic decline of the Sumatran rhino (Dicerorhinus sumatrensis harrissoni) in Sabah: historic exploitation, reduced female reproductive performance and population viability. Glob. Ecol. Conserv.6, 257–275 (2016).