Morphology and niche evolution influence hummingbird speciation rates
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
37072043
PubMed Central
PMC10113027
DOI
10.1098/rspb.2022.1793
Knihovny.cz E-zdroje
- Klíčová slova
- Trochilidae, diversification, dynamic traits, evolutionary divergence, niche conservatism,
- MeSH
- biologická evoluce MeSH
- ekosystém * MeSH
- fenotyp MeSH
- fylogeneze MeSH
- ptáci * genetika anatomie a histologie MeSH
- teplota MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
How traits affect speciation is a long-standing question in evolution. We investigate whether speciation rates are affected by the traits themselves or by the rates of their evolution, in hummingbirds, a clade with great variation in speciation rates, morphology and ecological niches. Further, we test two opposing hypotheses, postulating that speciation rates are promoted by trait conservatism or, alternatively, by trait divergence. To address these questions, we analyse morphological (body mass and bill length) and niche traits (temperature and precipitation position and breadth, and mid-elevation), using a variety of methods to estimate speciation rates and correlate them with traits and their evolutionary rates. When it comes to the traits, we find faster speciation in smaller hummingbirds with shorter bills, living at higher elevations and experiencing greater temperature ranges. As for the trait evolutionary rates, we find that speciation increases with rates of divergence in the niche traits, but not in the morphological traits. Together, these results reveal the interplay of mechanisms through which different traits and their evolutionary rates (conservatism or divergence) influence the origination of hummingbird diversity.
Departamento de Ecologia Universidade Federal de Goiás Campus Samambaia Goiânia Goiás Brazil
Department of Ecology Charles University Vinicna 7 12844 Prague Czechia
Zobrazit více v PubMed
Simpson GG. 1953. The major features of evolution. New York, NY: Columbia University Press.
Wiens JJ. 2017. What explains patterns of biodiversity across the Tree of Life? New research is revealing the causes of the dramatic variation in species numbers across branches of the Tree of Life. Bioessays 39, 1-10. (10.1002/bies.201600128) PubMed DOI
Owens IPF, Bennett PM, Harvey PH. 1999. Species richness among birds: body size, life history, sexual selection or ecology? Proc. R. Soc. B 266, 933-939. (10.1098/rspb.1999.0726) DOI
Rolland J, Salamin N. 2016. Niche width impacts vertebrate diversification. Global Ecol. Biogeogr. 25, 1252-1263. (10.1111/geb.12482) DOI
Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification correlated with rates of morphological evolution? Proc. R. Soc. B 276, 2729-2738. (10.1098/rspb.2009.0543) PubMed DOI PMC
Kozak KH, Wiens JJ. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378-1389. (10.1111/j.1461-0248.2010.01530.x) PubMed DOI
Wiens JJ. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193-197. PubMed
Calder WA. 1994. When do hummingbirds use torpor in nature? Physiol. Zool. 67, 1051-1076.
Bribiesca R, Herrera-Alsina L, Ruiz-Sanchez E, Sánchez-González LA, Schondube JE. 2019. Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: a phylogenetic approach. Ecol. Evol. 9, 1623-1637. (10.1002/ece3.4785) PubMed DOI PMC
Shankar A, Powers DR, Dávalos LM, Graham CH. 2020. The allometry of daily energy expenditure in hummingbirds: an energy budget approach. J. Anim. Ecol. 89, 1254-1261. (10.1111/1365-2656.13185) PubMed DOI
Gittleman JL, Purvis A. 1998. Body size and species-richness in carnivores and primates. Proc. R. Soc. Lond. B 265, 113-119. (10.1098/rspb.1998.0271) PubMed DOI PMC
Feldman A, Sabath N, Pyron RA, Mayrose I, Meiri S. 2016. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecol. Biogeogr. 25, 187-197. (10.1111/geb.12398) DOI
Feinsinger P, Colwell R. 1978. Community organization among neotropical nectar-feeding birds. Am. Zool. 18, 779-795. (10.1093/icb/18.4.779) DOI
Weinstein BG, Graham CH. 2017. Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbirdplant interactions. Ecol. Lett. 20, 326-335. (10.1111/ele.12730) PubMed DOI
Rico-Guevara A, Rubega MA, Hurme KJ, Dudley R. 2019. Shifting paradigms in the mechanics of nectar extraction and hummingbird bill morphology. Integr. Organismal Biol. 1, oby006. (10.1093/iob/oby006) PubMed DOI PMC
Maglianesi MA, Blüthgen N, Böhning-Gaese K, Schleuning M. 2014. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95, 3325-3334. (10.1890/13-2261.1) DOI
Dalsgaard B, et al. 2021. The influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networks. Funct. Ecol. 35, 1120-1133. (10.1111/1365-2435.13784) DOI
Machac A. 2020. The dynamics of bird diversity in the new world. Syst. Biol. 69, 1180-1199. (10.1093/sysbio/syaa028) PubMed DOI PMC
Gómez-Rodríguez C, Baselga A, Wiens JJ. 2015. Is diversification rate related to climatic niche width? Global Ecol. Biogeogr. 24, 383-395. (10.1111/geb.12229) DOI
Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA. 2017. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183-206. (10.1146/annurev-ecolsys-110316-023003) DOI
Gaston KJ. 2003. The structure and dynamics of geographic ranges. New York, NY: Oxford University Press.
Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104-1114. (10.1111/ele.12140) PubMed DOI
Quintero I, Jetz W. 2018. Global elevational diversity and diversification of birds. Nature 555, 246-250. (10.1038/nature25794) PubMed DOI
Bleiweiss R. 1998. Slow rate of molecular evolution in high-elevation hummingbirds. Proc. Natl Acad. Sci. USA 95, 612-616. (10.1073/pnas.95.2.612) PubMed DOI PMC
Li P, Wiens JJ. 2022. What drives diversification? Range expansion tops climate, life history, habitat and size in lizards and snakes. J. Biogeogr. 49, 237-247. (10.1111/jbi.14304) DOI
Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Ann. Rev. Ecol. Evol. Syst. 36, 519-539. (10.1007/s00408-009-9147-5) DOI
Vermeji GJ. 1973. Adaptation, versatility, and evolution. Syst. Zool. 22, 466-477.
Schluter D. 2001. Ecology and the origin of species. Trends Ecol. Evol. 16, 372-380. PubMed
Cooney CR, Seddon N, Tobias JA. 2016. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869-878. (10.1111/1365-2656.12530) PubMed DOI
Seeholzer GF, Claramunt S, Brumfield RT. 2017. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71, 702-715. (10.1111/evo.13177) PubMed DOI
Schluter D, Pennell MW. 2017. Speciation gradients and the distribution of biodiversity. Nature 546, 48-55. (10.1038/nature22897) PubMed DOI
Rundell RJ, Price TD. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394-399. (10.1016/j.tree.2009.02.007) PubMed DOI
Altshuler DL, Dudley R. 2002. The ecological and evolutionary interface of hummingbird flight physiology. J. Exp. Biol. 205, 2325-2336. (10.1242/jeb.205.16.2325) PubMed DOI
McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL, Altshuler DL, Dudley R. 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910-916. (10.1016/j.cub.2014.03.016) PubMed DOI
Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543. (10.1371/journal.pone.0089543) PubMed DOI PMC
Title PO, Rabosky DL. 2019. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821-834. (10.1111/2041-210X.13153) DOI
Tobias JA, et al. 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597. (10.1111/ele.13898) PubMed DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The global diversity of birds in space and time. Nature 491, 444-448. (10.1038/nature11631) PubMed DOI
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. (10.1111/j.2041-210X.2011.00169.x) DOI
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 1-20. (10.1038/sdata.2017.122) PubMed DOI PMC
Hijmans RJ. 2016. raster: Geographic data analysis and modeling. R package version 2.5-8. See https://cran.r-project.org/package=raster.
BirdLife International and Natureserve. 2015. Bird species distribution maps of the world, version 5.0. Cambridge, UK: Birdlife International.
Ellis-Soto D, Merow C, Amatulli G, Parra JL, Jetz W. 2021. Continental-scale 1km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography 44, 640-652. (10.1111/ecog.05119) DOI
Maliet O, Hartig F, Morlon H. 2019. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 3, 1086-1092. (10.1038/s41559-019-0908-0) PubMed DOI
Maliet O, Morlon H. 2022. Fast and accurate estimation of species-specific diversification rates using data augmentation. Syst. Biol. 71, 353-366. (10.1093/sysbio/syab055) PubMed DOI
Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 201518659. (10.1073/pnas.1518659113) PubMed DOI PMC
Louca S, Pennell MW. 2020. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 501-505. (10.1038/s41586-020-2176-1) PubMed DOI
Cooney CR, Thomas GH. 2021. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101-110. (10.1038/s41559-020-01321-y) PubMed DOI
Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG. 2014. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707. (10.1111/2041-210X.12199) DOI
Gill F, Donsker D, Rasmussen P. 2022. IOC World Bird List (v12.2). (10.14344/IOC.ML.12.1) DOI
Rabosky DL, Huang H. 2016. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181-193. (10.1093/sysbio/syv066) PubMed DOI
Harvey MG, Rabosky DL. 2018. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984-993. (10.1111/2041-210X.12949) DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. (10.1038/44766) PubMed DOI
Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216-2218. (10.1093/bioinformatics/btu181) PubMed DOI
Beltrán DF, Shultz AJ, Parra JL. 2021. Speciation rates are positively correlated with the rate of plumage color evolution in hummingbirds. Evolution 75, 1665-1680. (10.1111/evo.14277) PubMed DOI
Rojas D, Jo M, Pereira R, Fonseca C. 2018. Corrigendum to: eating down the food chain: generalism is not an evolutionary dead end for herbivores (Ecology Letters, (2018), 21, 3, (402–410), 10.1111/ele.12911). Ecol. Lett. 21, 1124-1126. (10.1111/ele.12968) PubMed DOI
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2018. caper: Comparative Analyses of Phylogenetics and Evolution in R.
Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1-22. (10.18637/jss.v033.i02) PubMed DOI
Dormann CF, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27-46. (10.1111/j.1600-0587.2012.07348.x) DOI
Title PO, Burns KJ. 2015. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecol. Lett. 18, 433-440. (10.1111/ele.12422) PubMed DOI
Phillimore AB, Freckleton RP, Orme CDL, Owens IPF. 2006. Ecology predicts large-scale patterns of phylogenetic diversification in birds. Am. Nat. 168, 220-229. (10.1086/505763) PubMed DOI
Sayol F, Lapiedra O, Ducatez S, Sol D. 2019. Larger brains spur species diversification in birds. Evolution 73, 2085-2093. (10.1111/evo.13811) PubMed DOI
Claramunt S, Derryberry EP, Remsen JV, Brumfield RT. 2012. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279, 1567-1574. (10.1098/rspb.2011.1922) PubMed DOI PMC
Rodríguez-Flores CI, Ornelas JF, Wethington S, Arizmendi M. 2019. Are hummingbirds generalists or specialists? Using network analysis to explore the mechanisms influencing their interaction with nectar resources. PLoS ONE 14, e0211855. (10.1371/journal.pone.0211855) PubMed DOI PMC
Dellinger AS, Pérez-Barrales R, Michelangeli FA, Penneys DS, Fernández-Fernández DM, Schönenberger J. 2021. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. 231, 864-877. (10.1111/nph.17390) PubMed DOI
Castellanos MC, Wilson P, Thomson JD. 2004. ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876-885. (10.1111/j.1420-9101.2004.00729.x) PubMed DOI
Graham CH, Parra JL, Rahbek C, McGuire JA. 2009. Phylogenetic structure in tropical hummingbird communities. Proc. Natl Acad. Sci. USA 106, 19 673-19 678. (10.1073/pnas.0901649106) PubMed DOI PMC
Pérez-Escobar OA, et al. 2022. The Andes through time: evolution and distribution of Andean floras. Trends Plant Sci. 27, 364-378. (10.1016/j.tplants.2021.09.010) PubMed DOI
Chaves JA, Weir JT, Smith TB. 2011. Diversification in Adelomyia hummingbirds follows Andean uplift. Mol. Ecol. 20, 4564-4576. (10.1111/j.1365-294X.2011.05304.x) PubMed DOI
Castro-Insua A, Gómez-Rodríguez C, Wiens JJ, Baselga A. 2018. Climatic niche divergence drives patterns of diversification and richness among mammal families. Sci. Rep. 8, 8781. (10.1038/s41598-018-27068-y) PubMed DOI PMC
Moen DS, Wiens JJ. 2017. Microhabitat and climatic niche change explain patterns of diversification among frog families. Am. Nat. 190, 29-44. (10.1086/692065) PubMed DOI
Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1-8. (10.1038/ncomms2958) PubMed DOI
Bleiweiss R. 1998. Tempo and mode of hummingbird evolution. Biol. J. Linnean Soc. 65, 63-76. (10.1006/bijl.1998.0241) DOI
Crouch NMA, Ricklefs RE. 2019. Speciation rate is independent of the rate of evolution of morphological size, shape, and absolute morphological specialization in a large clade of birds. Am. Nat. 193, 78-91. (10.1086/701630) PubMed DOI
Crouch NMA, Tobias JA. 2022. The causes and ecological context of rapid morphological evolution in birds. Ecol. Lett. 25, 611-623. (10.1111/ele.13962) PubMed DOI
Rabosky DL. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816-1824. (10.1111/j.1558-5646.2009.00926.x) PubMed DOI
Barreto E, Lim MCW, Rojas D, Dávalos LM, Wüest RO, Machac A, Graham CH. 2023. Morphology and niche evolution influence hummingbird speciation rates. Figshare. (10.6084/m9.figshare.c.6533971) PubMed DOI PMC
Morphology and niche evolution influence hummingbird speciation rates