Plant communities often exhibit high diversity, even though pairwise experiments usually result in competitive hierarchies that should result in competitive exclusion. Such experiments, however, do not typically allow expression of spatial traits, despite theoretical studies showing the potential importance of spatial mechanisms of diversity maintenance. Here we ask whether, in a clonal plant model system, spatial trait variation is more likely than growth trait variation to maintain diversity. We used a field-calibrated, spatially explicit model to simulate communities comprising sets of four simulated species differing in only one of a suite of architectural or growth traits at a time, examining their dynamics and long-term diversity. To compare trait manipulation effects across traits measured in different units, we scaled traits to have identical effects on initial productivity. We found that in communities of species differing only in an architectural trait, all species usually persist, whereas communities of species differing only in a growth trait experienced rapid competitive exclusion. To examine the roles of equalizing and stabilizing mechanisms in maintaining diversity, we conducted reciprocal invasion experiments for species pairs differing only in single traits. The results suggest that stabilizing mechanisms cannot account for the observed long-term co-occurrence. Strong positive correlations between diversity and similarity both in monoculture carrying capacity and reciprocal invasion ability suggesting equalizing mechanisms may instead be responsible.
- MeSH
- Biodiversity * MeSH
- Models, Biological MeSH
- Carex Plant genetics growth & development physiology MeSH
- Plant Dispersal MeSH
- Species Specificity MeSH
- Phenotype * MeSH
- Reproduction, Asexual MeSH
- Computer Simulation MeSH
- Population Dynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.
- MeSH
- Species Specificity MeSH
- Ecosystem MeSH
- Host Specificity MeSH
- Hymenoptera classification physiology MeSH
- Host-Parasite Interactions * MeSH
- Quantitative Trait, Heritable * MeSH
- Aphids classification physiology MeSH
- Population Dynamics MeSH
- Food Chain MeSH
- Plants parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
The polydactylous rat strain (PD/Cub) is a highly inbred (F > 90) genetic model of metabolic syndrome. The aim of this study was to analyze the genetic architecture of the metabolic derangements found in the PD/Cub strain and to assess its dynamics in time and in response to diet and medication. We derived a PD/Cub x BN/Cub (Brown Norway) F2 intercross population of 149 male rats and performed metabolic profiling and genotyping and multiple levels of genetic linkage and statistical analyses at five different stages of ontogenesis and after high-sucrose diet feeding and dexamethasone administration challenges. The interval mapping analysis of 83 metabolic and morphometric traits revealed over 50 regions genomewide with significant or suggestive linkage to one or more of the traits in the segregating PD/Cub x BN/Cub population. The multiple interval mapping showed that, in addition to "single" quantitative train loci, there are more than 30 pairs of loci across the whole genome significantly influencing the variation of particular traits in an epistatic fashion. This study represents the first whole genome analysis of metabolic syndrome in the PD/Cub model and reveals several new loci previously not connected to the genetics of insulin resistance and dyslipidemia. In addition, it attempts to present the concept of "dynamic genetic architecture" of metabolic syndrome attributes, evidenced by shifts in the genetic determination of syndrome features during ontogenesis and during adaptation to the dietary and pharmacological influences.
- MeSH
- Anti-Inflammatory Agents administration & dosage pharmacology metabolism MeSH
- Dexamethasone administration & dosage pharmacology metabolism MeSH
- Dyslipidemias genetics metabolism MeSH
- Phenotype MeSH
- Genetic Linkage MeSH
- Insulin Resistance genetics MeSH
- Rats MeSH
- Quantitative Trait Loci MeSH
- Metabolic Syndrome * genetics metabolism MeSH
- Rats, Inbred BN MeSH
- Animals, Congenic MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Possibilities of conducting longitudinal human growth studies are very limited, since it is necessary to monitor the probands for a long time. Another problem can be a loss of data currency, and the small size of the final sample. The solution can be a follow-up semi-longitudinal observation. This research is drawn up as a short longitudinal monitoring of 1925 children (990 boys, 935 girls), aged 6-15 years, at 20 elementary schools in four regions of the Czech Republic, which has been conducted at the same time. Data of repeatedly examined probands of a wide age range were acquired in a short time period. With the help of a linear regression model with mixed effect, the growth velocity curves of 12 somatic traits have been obtained. The timing, intensity and duration of separate growth spurts have been observed, as well as the mutual location of both points of growth velocity, local maxima and minima, and points of the maximal acceleration and deceleration. The results demonstrate that the velocity of characters with variable growth dynamics (skin-fold thicknesses, circumferences of limbs) - contrary to characters with regular growth velocity - have a higher number of partial growth spurts and an opposite course. In the period of separate growth velocity, peaks of somatic characters with regular growth dynamics reach points of partial local minima. In comparison to previous longitudinal studies of body height growth dynamics, the shift of both the beginning and the peak of boys' and girls' pubertal spurt, to a lower age can be found.
- MeSH
- Anthropometry MeSH
- Child MeSH
- Extremities MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Adolescent MeSH
- Growth MeSH
- Sex Factors MeSH
- Body Weight MeSH
- Body Height MeSH
- Skinfold Thickness MeSH
- Child Development MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Understanding transcontinental biogeographic patterns has been one of the main foci of the field of biogeography. While multiple explanations for transcontinental disjunctions have been proposed, little is still known about the relative importance of intrinsic and extrinsic traits for the diversification dynamics of disjunct taxa. Here, we study the evolutionary history of the genus Picris L. (Compositae), a great model for investigating the diversification dynamics of transoceanic bipolar disjunct organisms. Ancestral state reconstructions indicate that the most recent common ancestor (MRCA) of Picris was a semelparous and heterocarpic herb that lived in unpredictable environments of North Africa and West Asia. Diversification analyses suggest a significant shift in speciation ca. 1 million years ago, likely associated with the onset of the mid-Pleistocene revolution. Longevity characters are correlated with the evolution of particular fruit types and with environmental conditions. Heterocarpic species are mostly semelparous herbs strongly linked with unpredictable habitats, while homocarpic taxa are mostly iteroparous plants occurring in predictable environments. Binary-state speciation and extinction analyses suggest that homocarpy, iteroparity, and habitats predictability accelerate diversification. Although the combination of homocarpy and iteroparity evolved in several lineages, only members of the P. hieracioides group were able to colonise Eurasia and expand to Australia by transoceanic dispersal. Those findings indicate that large-scale colonisation events depend on a complex interplay of intrinsic and extrinsic factors.
- MeSH
- Asteraceae classification MeSH
- Bayes Theorem MeSH
- Biodiversity * MeSH
- Models, Biological MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Quantitative Trait, Heritable MeSH
- Climate * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Asia MeSH
- Australia MeSH
- Africa, Northern MeSH
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.
1. Predation is often size selective, but the role of other traits of the prey and predators in their interactions is little known. This hinders our understanding of the causal links between trophic interactions and the structure of animal communities. Better knowledge of trophic traits underlying predator-prey interactions is also needed to improve models attempting to predict food web structure and dynamics from known species traits. 2. We carried out laboratory experiments with common freshwater macroinvertebrate predators (diving beetles, dragonfly and damselfly larvae and water bugs) and their prey to assess how body size and traits related to foraging (microhabitat use, feeding mode and foraging mode) and to prey vulnerability (microhabitat use, activity and escape behaviour) affect predation strength. 3. The underlying predator-prey body mass allometry characterizing mean prey size and total predation pressure was modified by feeding mode of the predators (suctorial or chewing). Suctorial predators fed upon larger prey and had ˜3 times higher mass-specific predation rate than chewing predators of the same size and may thus have stronger effect on prey abundance. 4. Strength of individual trophic links, measured as mortality of the focal prey caused by the focal predator, was determined jointly by the predator and prey body mass and their foraging and vulnerability traits. In addition to the feeding mode, interactions between prey escape behaviour (slow or fast), prey activity (sedentary or active) and predator foraging mode (searching or ambush) strongly affected prey mortality. Searching predators was ineffective in capturing fast-escape prey in comparison with the remaining predator-prey combinations, while ambush predators caused higher mortality than searching predators and the difference was larger in active prey. 5. Our results imply that the inclusion of the commonly available qualitative data on foraging traits of predators and vulnerability traits of prey could substantially increase biological realism of food web descriptions.
- MeSH
- Invertebrates physiology MeSH
- Coleoptera physiology MeSH
- Chironomidae MeSH
- Behavior, Animal physiology MeSH
- Cladocera MeSH
- Culicidae MeSH
- Heteroptera physiology MeSH
- Insecta MeSH
- Isopoda MeSH
- Larva physiology MeSH
- Locomotion MeSH
- Lymnaea MeSH
- Carnivory physiology MeSH
- Mortality MeSH
- Food Chain MeSH
- Predatory Behavior * MeSH
- Fresh Water MeSH
- Body Weight physiology MeSH
- Odonata physiology MeSH
- Aquatic Organisms physiology MeSH
- Anura MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity.
- MeSH
- Biodiversity * MeSH
- Biomass MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Eutrophication MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.
- MeSH
- Models, Biological MeSH
- Computer Simulation MeSH
- Food Chain * MeSH
- Predatory Behavior * MeSH
- Stochastic Processes MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
During the growing season, trees allocate photoassimilates to increase their aboveground woody biomass in the stem (ABIstem). This 'carbon allocation' to structural growth is a dynamic process influenced by internal and external (e.g., climatic) drivers. While radial variability in wood formation and its resulting structure have been intensively studied, their variability along tree stems and subsequent impacts on ABIstem remain poorly understood. We collected wood cores from mature trees within a fixed plot in a well-studied temperate Fagus sylvatica L. forest. For a subset of trees, we performed regular interval sampling along the stem to elucidate axial variability in ring width (RW) and wood density (ρ), and the resulting effects on tree- and plot-level ABIstem. Moreover, we measured wood anatomical traits to understand the anatomical basis of ρ and the coupling between changes in RW and ρ during drought. We found no significant axial variability in ρ because an increase in the vessel-to-fiber ratio with smaller RW compensated for vessel tapering towards the apex. By contrast, temporal variability in RW varied significantly along the stem axis, depending on the growing conditions. Drought caused a more severe growth decrease, and wetter summers caused a disproportionate growth increase at the stem base compared with the top. Discarding this axial variability resulted in a significant overestimation of tree-level ABIstem in wetter and cooler summers, but this bias was reduced to ~2% when scaling ABIstem to the plot level. These results suggest that F. sylvatica prioritizes structural carbon sinks close to the canopy when conditions are unfavorable. The different axial variability in RW and ρ thereby indicates some independence of the processes that drive volume growth and wood structure along the stem. This refines our knowledge of carbon allocation dynamics in temperate diffuse-porous species and contributes to reducing uncertainties in determining forest carbon fixation.