• This record comes from PubMed

Farmland practices are driving bird population decline across Europe

. 2023 May 23 ; 120 (21) : e2216573120. [epub] 20230515

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.

Adam Mickiewicz University Poznań 61 712 Poland

Andorran Research Innovation Sant Julià de Lòria AD500 Principality of Andorra

Aves Natagora Namur 5000 Belgium

BirdLife Austria Vienna 1070 Austria

BirdLife Cyprus Nicosia 2340 Cyprus

BirdLife Norway Trondheim 7012 Norway

BirdWatch Ireland on behalf of the National Parks and Wildlife Service Kilcoole A63 RW83 Republic of Ireland

British Trust for Ornithology Thetford IP24 2PU United Kingdom

Catalan Ornithological Institute Natural History Museum of Barcelona Barcelona 4 5 08019 Spain

Centre de Ciència i Tecnologia Forestal de Catalunya Solsona 25280 Spain

Centre for Ecological Research and Forestry Applications Cerdanyola del Vallès 08193 Spain

Czech Society for Ornithology BirdLife Czech Republic Prague 150 00 Czech Republic

Dachverband Deutscher Avifaunisten Muenster D 48157 Germany

Danish Ornithological Society BirdLife Denmark Copenhagen 1620 Denmark

Department of Biology Lund University Lund 223 62 Sweden

Department of Genetics Evolution and Environment Centre for Biodiversity and Environment Research University College London London WC1E 6BT United Kingdom

Department of Zoology Faculty of Science Palacký University Olomouc 779 00 Czech Republic

Dimensione Ricerca Ecologia Ambiente Italia Pratovecchio 52015 Italy

Društvo za opazovanje in proučevanje ptic Slovenije BirdLife Slovenia Ljubljana SI 1000 Slovenia

Estonian Ornithological Society Birdlife Estonia Tartu 51005 Estonia

European Bird Census Council Nijmegen 6524 The Netherlands

Faculty of Biology University of Latvia Riga LV 1004 Latvia

FaunaViva MITO2000 Parma 43122 Italy

Finnish Museum of Natural History University of Helsinki Helsinki 00100 Finland

Hellenic Ornithological Society Athens 10437 Greece

Hungarian Ornithological and Nature Conservation Society BirdLife Hungary Budapest 1121 Hungary

Institut des Sciences de l'Évolution de Montpellier Montpellier 34095 France

Institute for Environmental Studies Faculty of Science Charles University Prague 128 00 Czech Republic

Latvian Ornithological Society Riga LV 1050 Latvia

Lithuanian Ornithological Society Vilnius LT 03208 Lithuania

Milvus Group Bird and Nature Protection Association Tîrgu Mureş 540445 Romania

Museum and Institute of Zoology Polish Academy of Sciences Warszawa 00 679 Poland

Norwegian Institute for Nature Research Trondheim 7485 Norway

Patrinat and UMR7204 Centre d'Écologie et des Sciences de la Conservation CNRS SU Paris 75005 France

Polish Society for the Protection of Birds Ogólnopolskie Towarzystwo Ochrony Ptaków Marki 05 270 Poland

Portuguese Society for the Study of Birds Sociedade Portuguesa para o Estudo das Aves Lisbon 700 031 Portugal

Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen 6525 The Netherlands

Romanian Ornithological Society BirdLife Romania Cluj Napoca 030231 Romania

Section of Science Nord University Levanger 8049 Norway

Sovon Dutch Center for Field Ornithology Nijmegen 6525 The Netherlands

Spanish National Research Council Consejo Superior de Investigaciones Científicas Cerdanyola del Vallès 08193 Spain

Spanish Ornithological Society Madrid 28053 Spain

Swiss Ornithological Institute Sempach CH 6204 Switzerland

The Royal Society for the Protection of Birds Centre for Conservation Science Sandy SG19 2DL United Kingdom

University of Nyíregyháza Nyíregyháza 4400 Hungary

Vytautas Magnus University Kaunas 44248 Lithuania

Comment In

PubMed

See more in PubMed

Ripple W. J., et al. , World scientists’ warning to humanity: A second notice. BioScience 67, 1026–1028 (2017).

Ceballos G., Ehrlich P. R., Dirzo R., Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U.S.A. 114, E6089–E6096 (2017). PubMed PMC

Hutchings J. A., Reynolds J. D., Marine fish population collapses: Consequences for recovery and extinction risk. BioScience 54, 297–309 (2004).

Loh J., et al. , The living planet index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 360, 289–295 (2005). PubMed PMC

Habel J. C., Samways M. J., Schmitt T., Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

Stephens P. A., et al. , Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016). PubMed

Lees A. C., et al. , State of the World’s birds. Annu. Rev. Environ. Resour. 47, 231–260 (2022).

Storchová L., Hořák D., Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27, 400–406 (2018).

Tobias J. A., et al. , AVONET: Morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022). PubMed

Heldbjerg H., Sunde P., Fox A. D., Continuous population declines for specialist farmland birds 1987–2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conserv. Int. 28, 278–292 (2018).

Kamp J., et al. , Population trends of common breeding birds in Germany 1990–2018. J. Ornithol. 162, 1–15 (2021).

Burns F., et al. , Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660 (2021). PubMed PMC

Inger R., et al. , Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015). PubMed

Rosenberg K. V., et al. , Decline of the North American avifauna. Science 366, 120–124 (2019). PubMed

Mason L. R., et al. , Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).

Gregory R., et al. , Drivers of the changing abundance of European birds at two spatial scales. Philos. Trans. R. Soc. B Biol. Sci. (2023)(January 27, 2023). PubMed PMC

Gregory R. D., et al. , Population trends of widespread woodland birds in Europe. Ibis 149, 78–97 (2007).

Johnston R. F., “Synanthropic birds of North America” in Avian Ecology and Conservation in an Urbanizing World (Springer, 2001), pp. 49–67.

Clavel J., Julliard R., Devictor V., Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

Howard C., et al. , Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds. Divers. Distrib. 26, 1442–1455 (2020).

Clement M. J., et al. , Partitioning global change: Assessing the relative importance of changes in climate and land cover for changes in avian distribution. Ecol. Evol. 9, 1985–2003 (2019). PubMed PMC

Jørgensen P. S., et al. , Continent-scale global change attribution in European birds-combining annual and decadal time scales. Glob. Change Biol. 22, 530–543 (2016). PubMed

Stanton R. L., Morrissey C. A., Clark R. G., Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 254, 244–254 (2018).

Donald P. F., Green R. E., Heath M. F., Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. B Biol. Sci. 268, 25–29 (2001). PubMed PMC

Reif J., Vermouzek Z., Collapse of farmland bird populations in an Eastern European country following its EU accession. Conserv. Lett. 12, e12585 (2019).

Howard C., Stephens P. A., Pearce-Higgins J. W., Gregory R. D., Willis S. G., The drivers of avian abundance: Patterns in the relative importance of climate and land use. Glob. Ecol. Biogeogr. 24, 1249–1260 (2015).

Li Y., Miao R., Khanna M., Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 3, 1027–1035 (2020).

Josefsson J., et al. , Improving scientific rigour in conservation evaluations and a plea deal for transparency on potential biases. Conserv. Lett. 13, e12726 (2020).

Reif J., Long-term trends in bird populations: A review of patterns and potential drivers in North America and Europe. Acta Ornithol. 48, 1–16 (2013).

Bertrand R., et al. , Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 1–10 (2016). PubMed PMC

Carrascal L. M., Galván I., Gordo O., Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

Tsonis A. A., Deyle E. R., Ye H., Sugihara G., “Convergent cross mapping: Theory and an example” in Advances in Nonlinear Geosciences, (Springer, 2018), pp. 587–600.

Clark A. T., et al. , Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96, 1174–1181 (2015). PubMed

Ushio M., et al. , Fluctuating interaction network and time-varying stability of a natural fish community. Nature 554, 360–363 (2018). PubMed

Sugihara G., et al. , Detecting causality in complex ecosystems. Science 338, 496–500 (2012). PubMed

Evans A. L., et al. , Drivers of hibernation in the brown bear. Front. Zool. 13, 7 (2016). PubMed PMC

Wang Y., et al. , Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8, 1–8 (2018). PubMed PMC

Wang J.-Y., Kuo T.-C., Hsieh C., Causal effects of population dynamics and environmental changes on spatial variability of marine fishes. Nat. Commun. 11, 1–10 (2020). PubMed PMC

Brlík V., et al. , Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data 8, 21 (2021). PubMed PMC

Chiron F., Chargé R., Julliard R., Jiguet F., Muratet A., Pesticide doses, landscape structure and their relative effects on farmland birds. Agric. Ecosyst. Environ. 185, 153–160 (2014).

Benton T. G., Vickery J. A., Wilson J. D., Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

Møller A. P., Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019). PubMed PMC

Hallmann C. A., Foppen R. P., van Turnhout C. A., de Kroon H., Jongejans E., Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014). PubMed

Henttonen H. M., Nöjd P., Suvanto S., Heikkinen J., Mäkinen H., Large trees have increased greatly in Finland during 1921–2013, but recent observations on old trees tell a different story. Ecol. Indic. 99, 118–129 (2019).

Devictor V., et al. , Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

Both C., et al. , Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B Biol. Sci. 277, 1259–1266 (2010). PubMed PMC

Gaüzère P., Jiguet F., Devictor V., Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Glob. Change Biol. 21, 3367–3378 (2015). PubMed

Pearce-Higgins J. W., Eglington S. M., Martay B., Chamberlain D. E., Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015). PubMed

Jiguet F., et al. , Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. Lond. B Biol. Sci. 277, 3601–3608 (2010). PubMed PMC

Lindström Å., Green M., Paulson G., Smith H. G., Devictor V., Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36, 313–322 (2013).

Carey C., The impacts of climate change on the annual cycles of birds. Philos. Trans. R. Soc. B Biol. Sci. 364, 3321–3330 (2009). PubMed PMC

Pe’er G., et al., How can the European common agricultural policy help halt biodiversity loss? Recommendations by over 300 experts. Conserv. Lett. 15, e12901 (2022).

EEA, Country agricultural data (European Environment Agency, 2020), Available at https://ec.europa.eu/eurostat/fr/data/database and see metadata for detail at https://ec.europa.eu/eurostat/cache/metadata/en/aei_ps_inp_esms.htm.

FAO, Global Forest resources assessment 2020: Main report (FAO, Rome, 2020), 10.4060/ca9825en. DOI

Eurostat, Land cover and land use, landscape, LUCAS (2021), Available at https://ec.europa.eu/eurostat/fr/data/database and see metadata for detail at https://ec.europa.eu/eurostat/cache/metadata/en/lan_esms.htm.

Cornes R. C., van der Schrier G., van den Besselaar E. J., Jones P. D., An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

Pearce-Higgins J. W., Green R. E., Birds and Climate Change: Impacts and Conservation Responses (Cambridge University Press, 2014).

Lehikoinen A., et al. , Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 90, 1085–1095 (2021). PubMed

Bogaart P., Van Der Loo M., Pannekoek J., rtrim: Trends and Indices for Monitoring Data (R Package Version 2, 2018).

Pannekoek J., TRIM 3 Manual (Trends & Indices for Monitoring Data) (Statistics Netherlands, 2001).

R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).

Soldaat L. L., Pannekoek J., Verweij R. J., van Turnhout C. A., van Strien A. J., A Monte Carlo method to account for sampling error in multi-species indicators. Ecol. Indic. 81, 340–347 (2017).

Rigal S., Devictor V., Dakos V., A method for classifying and comparing non-linear trajectories of ecological variables. Ecol. Indic. 112, 106113 (2020).

Le Viol I., et al. , More and more generalists: Two decades of changes in the European avifauna. Biol. Lett. 8, 780–782 (2012). PubMed PMC

Jiguet F., et al. , Thermal range predicts bird population resilience to extreme high temperatures. Ecol. Lett. 9, 1321–1330 (2006). PubMed

Bertrand F., Magnanensi J., Meyer N., Maumy-Bertrand M., plsRglm: Algorithmic Insights and Applications (2014). https://cloud.r-project.org/web/packages/plsRglm/index.html.

Meyer N., Maumy-Bertrand M., Bertrand F., Comparaison de variantes de régressions logistiques PLS et de régression PLS sur variables qualitatives: application aux données d’allélotypage. J. Société Fr. Stat. 151, 1–18 (2010).

Efron B., Tibshirani R. J., An Introduction to the Bootstrap (CRC Press, 1994).

Deyle E. R., May R. M., Munch S. B., Sugihara G., Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B Biol. Sci. 283, 20152258 (2016). PubMed PMC

Takens F., “Detecting strange attractors in turbulence” in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.

Rigal S., R scripts and data for the following article: “Farmland practices are driving bird populations decline across Europe.” (2023). Available at https://cloud.r-project.org/web/packages/plsRglm/index.html;https://github.com/StanislasRigal/Drivers_European_bird_decline_public. 10.5281/zenodo.7828318. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...