Integrating animal tracking and trait data to facilitate global ecological discoveries

. 2025 Feb 15 ; 228 (Suppl_1) : . [epub] 20250220

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39973193

Grantová podpora
IOS 2052497 National Science Foundation
Office of Naval Research
David and Lucile Packard Foundation
Arnold and Mabel Beckman Foundation
Elysea Fund
NE/X013766/1 Natural Environment Research Council
101044740 European Union
University of California
80NSSC21K1182 NASA - United States

Understanding animal movement is at the core of ecology, evolution and conservation science. Big data approaches for animal tracking have facilitated impactful synthesis research on spatial biology and behavior in ecologically important and human-impacted regions. Similarly, databases of animal traits (e.g. body size, limb length, locomotion method, lifespan) have been used for a wide range of comparative questions, with emerging data being shared at the level of individuals and populations. Here, we argue that the proliferation of both types of publicly available data creates exciting opportunities to unlock new avenues of research, such as spatial planning and ecological forecasting. We assessed the feasibility of combining animal tracking and trait databases to develop and test hypotheses across geographic, temporal and biological allometric scales. We identified multiple research questions addressing performance and distribution constraints that could be answered by integrating trait and tracking data. For example, how do physiological (e.g. metabolic rates) and biomechanical traits (e.g. limb length, locomotion form) influence migration distances? We illustrate the potential of our framework with three case studies that effectively integrate trait and tracking data for comparative research. An important challenge ahead is the lack of taxonomic and spatial overlap in trait and tracking databases. We identify critical next steps for future integration of tracking and trait databases, with the most impactful being open and interlinked individual-level data. Coordinated efforts to combine trait and tracking databases will accelerate global ecological and evolutionary insights and inform conservation and management decisions in our changing world.

Zobrazit více v PubMed

Abraham, J. O., Upham, N. S., Damian-Serrano, A. and Jesmer, B. R. (2022). Evolutionary causes and consequences of ungulate migration. Nat. Ecol. Evol. 6, 998-1006. 10.1038/s41559-022-01749-4 PubMed DOI

Abrahms, B., Seidel, D. P., Dougherty, E., Hazen, E. L., Bograd, S. J., Wilson, A. M., Weldon McNutt, J., Costa, D. P., Blake, S., Brashares, J. S.et al. (2017). Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12. 10.1186/s40462-017-0104-2 PubMed DOI PMC

Abrahms, B., Aikens, E. O., Armstrong, J. B., Deacy, W. W., Kauffman, M. J. and Merkle, J. A. (2021). Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308-320. 10.1016/j.tree.2020.10.018 PubMed DOI

Arnold, P. A., Delean, S., Cassey, P. and White, C. R. (2021). Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J. Comp. Physiol. B 191, 1097-1110. 10.1007/s00360-021-01358-w PubMed DOI

Balk, M. A., Deck, J., Emery, K. F., Walls, R. L., Reuter, D., LaFrance, R., Arroyo-Cabrales, J., Barrett, P., Blois, J., Boileau, A.et al. (2022). A solution to the challenges of interdisciplinary aggregation and use of specimen-level trait data. iScience 25, 105101. 10.1016/j.isci.2022.105101 PubMed DOI PMC

Beltran, R., Kilpatrick, A. M., Picardi, S., Abrahms, B., Barrile, G., Oestreich, W., Smith, J., Czapanskiy, M., Favilla, A., Reisinger, R.et al. (2024). Biologging for the future: how biologgers can help solve fundamental questions, from individuals to ecosystems. EcoEvoRxiv. [Preprint]. 10.32942/X2TK66.

Bernard, C., Santos, G. S., Deere, J. A., Rodriguez-Caro, R., Capdevila, P., Kusch, E., Gascoigne, S. J. L., Jackson, J. and Salguero-Gómez, R. (2023). MOSAIC - a unified trait database to complement structured population models. Sci. Data 10, 335. 10.1038/s41597-023-02070-w PubMed DOI PMC

Bonin, F., Devaux, B. and Dupré, A. (2006). Turtles of the World. JHU Press.

Breed, G. A., Bowen, W., McMillan, J. and Leonard, M. L. (2006). Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proc. R. Soc. B Biol. Sci. 273, 2319-2326. 10.1098/rspb.2006.3581 PubMed DOI PMC

Brown, J. M., Bouten, W., Camphuysen, K. C. J., Nolet, B. A. and Shamoun-Baranes, J. (2023). Energetic and behavioral consequences of migration: an empirical evaluation in the context of the full annual cycle. Sci. Rep. 13, 1210. 10.1038/s41598-023-28198-8 PubMed DOI PMC

Bryce, C. M., Dunford, C. E., Pagano, A. M., Wang, Y., Borg, B. L., Arthur, S. M. and Williams, T. M. (2022). Environmental correlates of activity and energetics in a wide-ranging social carnivore. Anim. Biotelemetry 10, 1. 10.1186/s40317-021-00272-w DOI

Böhner, H., Kleiven, E. F., Ims, R. A. and Soininen, E. M. (2023). A semi-automatic workflow to process images from small mammal camera traps. Ecol. Inform. 76, 102150. 10.1016/j.ecoinf.2023.102150 DOI

Campbell, H. A., Beyer, H. L., Dennis, T. E., Dwyer, R. G., Forester, J. D., Fukuda, Y., Lynch, C., Hindell, M. A., Menke, N., Morales, J. M.et al. (2015). Finding our way: on the sharing and reuse of animal telemetry data in Australasia. Sci. Total Environ. 534, 79-84. 10.1016/j.scitotenv.2015.01.089 PubMed DOI

Campbell, H. A., Urbano, F., Davidson, S., Dettki, H. and Cagnacci, F. (2016). A plea for standards in reporting data collected by animal-borne electronic devices. Anim. Biotelemetry 4, 1. 10.1186/s40317-015-0096-x DOI

Chamberlain, S. A. and Szöcs, E. (2013). taxize: taxonomic search and retrieval in R. F1000Res. 2, 191. 10.12688/f1000research.2-191.v2 PubMed DOI PMC

Claramunt, S. (2021). Flight efficiency explains differences in natal dispersal distances in birds. Ecology 102, e03442. 10.1002/ecy.3442 PubMed DOI PMC

Colella, J. P., Stephens, R. B., Campbell, M. L., Kohli, B. A., Parsons, D. J. and Mclean, B. S. (2021). The open-specimen movement. Bioscience 71, 405-414. 10.1093/biosci/biaa146 DOI

Conde, D. A., Staerk, J., Colchero, F., Da Silva, R., Schöley, J., Baden, H. M., Jouvet, L., Fa, J. E., Syed, H., Jongejans, E.et al. (2019). Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. USA 116, 9658-9664. 10.1073/pnas.1816367116 PubMed DOI PMC

Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G. and Butler, P. J. (2004). Biotelemetry: a mechanistic approach to ecology. Trends Ecol. Evol. 19, 334-343. 10.1016/j.tree.2004.04.003 PubMed DOI

Culina, A., Adriaensen, F., Bailey, L. D., Burgess, M. D., Charmantier, A., Cole, E. F., Eeva, T., Matthysen, E., Nater, C. R., Sheldon, B. C.et al. (2021). Connecting the data landscape of long-term ecological studies: the SPI-Birds data hub. J. Anim. Ecol. 90, 2147-2160. 10.1111/1365-2656.13388 PubMed DOI PMC

Davidson, S. C., Bohrer, G., Gurarie, E., LaPoint, S., Mahoney, P. J., Boelman, N. T., Eitel, J. U. H., Prugh, L. R., Vierling, L. A., Jennewein, J.et al. (2020). Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712-715. 10.1126/science.abb7080 PubMed DOI

Davidson, S. C., Cagnacci, F., Newman, P., Dettki, H., Urbano, F., Desmet, P., Bajona, L., Bryant, E., Carneiro, A. P. B., Dias, M. P.et al. (2025). Establishing bio-logging data collections as dynamic archives of animal life on Earth. Nat. Ecol. Evol.. 10.1038/s41559-024-02585-4 PubMed DOI

Dawson, S. K., Carmona, C. P., González-Suárez, M., Jönsson, M., Chichorro, F., Mallen-Cooper, M., Melero, Y., Moor, H., Simaika, J. P. and Duthie, A. B. (2021). The traits of “trait ecologists”: an analysis of the use of trait and functional trait terminology. Ecol. Evol. 11, 16434-16445. 10.1002/ece3.8321 PubMed DOI PMC

De Magalhães, J. P. and Costa, J. (2009). A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770-1774. 10.1111/j.1420-9101.2009.01783.x PubMed DOI

Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., Schweitzer, J. A. and Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57-64. 10.1038/s41559-017-0402-5 PubMed DOI

Doherty, T. S., Hays, G. C. and Driscoll, D. A. (2021). Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol 5, 513-519. 10.1038/s41559-020-01380-1 PubMed DOI

Etard, A., Morrill, S. and Newbold, T. (2020). Global gaps in trait data for terrestrial vertebrates. Glob. Ecol. Biogeogr. 29, 2143-2158. 10.1111/geb.13184 DOI

Faurby, S., Davis, M., Pedersen, R. Ø., Schowanek, S. D., Antonelli, A. and Svenning, J.-C. (2018). PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626. 10.1002/ecy.2443 PubMed DOI

Fournier, A., Boone, M., Stevens, F. and Bruna, E. (2020). refsplitr: author name disambiguation, author georeferencing, and mapping of coauthorship networks with Web of Science data. J. Open Source Softw. 5, 2028. 10.21105/joss.02028 DOI

Fritz, S. A. and Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. J. Soc. Conserv. Biol. 24, 1042-1051. 10.1111/j.1523-1739.2010.01455.x PubMed DOI

Gaillard, J.-M., Loison, A., Festa-Bianchet, M., Yoccoz, N. G. and Solberg, E. (2003). Ecological correlates of life span in populations of large herbivorous mammals. Pop. Dev. Rev. 29, 39-56.

Gainsbury, A. M., Tallowin, O. J. S. and Meiri, S. (2018). An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal. Rev. 48, 160-167. 10.1111/mam.12119 DOI

Gallagher, R. V., Falster, D. S., Maitner, B. S., Salguero-Gómez, R., Vandvik, V., Pearse, W. D., Schneider, F. D., Kattge, J., Poelen, J. H., Madin, J. S.et al. (2020). Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294-303. 10.1038/s41559-020-1109-6 PubMed DOI

Gascoigne, S. J. L., Rolph, S., Sankey, D., Nidadavolu, N., Stell Pičman, A. S., Hernández, C. M., Philpott, M. E. R., Salam, A., Bernard, C., Fenollosa, E.et al. (2023). A standard protocol to report discrete stage-structured demographic information. Methods Ecol. Evol. 14, 2065-2083. 10.1111/2041-210X.14164 DOI

Grenié, M., Berti, E., Carvajal-Quintero, J., Dädlow, G. M. L., Sagouis, A. and Winter, M. (2023). Harmonizing taxon names in biodiversity data: a review of tools, databases and best practices. Methods Ecol. Evol. 14, 12-25. 10.1111/2041-210X.13802 DOI

Gross, M. (2024). Migratory species in danger. Curr. Biol. 34, R217-R219. 10.1016/j.cub.2024.03.004 DOI

Guralnick, R. (2017). Traits as essential biodiversity variables. Biodivers. Inf. Sci. Stand. 1, e20295.

Guralnick, R., Zermoglio, P., Wieczorek, J., LaFrance, R., Bloom, D. and Russell, L. (2016). The importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158. 10.1093/database/baw158 PubMed DOI PMC

Hantak, M. M., McLean, B. S., Li, D. and Guralnick, R. P. (2021). Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. 4, 972. 10.1038/s42003-021-02505-3 PubMed DOI PMC

Hardisty, A. R., Ellwood, E. R., Nelson, G., Zimkus, B., Buschbom, J., Addink, W., Rabeler, R. K., Bates, J., Bentley, A., Fortes, J. A. B.et al. (2022). Digital extended specimens: enabling an extensible network of biodiversity data records as integrated digital objects on the internet. Bioscience 72, 978-987. 10.1093/biosci/biac060 PubMed DOI PMC

Hazen, E. L., Maxwell, S. M., Bailey, H., Bograd, S. J., Hamann, M., Gaspar, P., Godley, B. J. and Shillinger, G. L. (2012). Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221-240. 10.3354/meps09857 DOI

Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S. B. A., McClean, D., Kelly, D. J., Donohue, I., Jackson, A. L. and Cooper, N. (2014). Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B Biol. Sci. 281, 20140298. 10.1098/rspb.2014.0298 PubMed DOI PMC

Hein, A. M., Hou, C. and Gillooly, J. F. (2012). Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104-110. 10.1111/j.1461-0248.2011.01714.x PubMed DOI

Herberstein, M. E., McLean, D. J., Lowe, E., Wolff, J. O., Khan, M. K., Smith, K., Allen, A. P., Bulbert, M., Buzatto, B. A., Eldridge, M. D. B.et al. (2022). AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size. Sci. Data 9, 265. 10.1038/s41597-022-01364-9 PubMed DOI PMC

Hindell, M. A., Reisinger, R. R., Ropert-Coudert, Y., Hückstädt, L. A., Trathan, P. N., Bornemann, H., Charrassin, J.-B., Chown, S. L., Costa, D. P. and Danis, B.et al. (2020). Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87-92. 10.1038/s41586-020-2126-y PubMed DOI

Iverson, S. J., Fisk, A. T., Hinch, S. G., Mills Flemming, J., Cooke, S. J. and Whoriskey, F. G. (2018). The ocean tracking network: advancing frontiers in aquatic science and management. Ocean Track. Netw. Adv. Aquat. Res. Manag. 01, 1041-1051.

Jetz, W., Sekercioglu, C. H. and Böhning-Gaese, K. (2008). The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303. 10.1371/journal.pbio.0060303 PubMed DOI PMC

Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C.et al. (2019). Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539-551. 10.1038/s41559-019-0826-1 PubMed DOI

Joly, K., Gurarie, E., Sorum, M. S., Kaczensky, P., Cameron, M. D., Jakes, A. F., Borg, B. L., Nandintsetseg, D., Hopcraft, J. G. C., Buuveibaatar, B.et al. (2019). Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333. 10.1038/s41598-019-51884-5 PubMed DOI PMC

Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H. and Carbone, C.et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: ecological archives E090-184. Ecology 90, 2648-2648. 10.1890/08-1494.1 DOI

Kays, R., McShea, W. J. and Wikelski, M. (2020). Born-digital biodiversity data: millions and billions. Divers. Distrib. 26, 644-648. 10.1111/ddi.12993 DOI

Kays, R., Davidson, S. C., Berger, M., Bohrer, G., Fiedler, W., Flack, A., Hirt, J., Hahn, C., Gauggel, D., Russell, B.et al. (2022). The Movebank system for studying global animal movement and demography. Methods Ecol. Evol. 13, 419-431. 10.1111/2041-210X.13767 DOI

Kays, R., Hirsch, B., Caillaud, D., Mares, R., Alavi, S., Havmøller, R. W. and Crofoot, M. (2023). Multi-scale movement syndromes for comparative analyses of animal movement patterns. Mov. Ecol. 11, 61. 10.1186/s40462-022-00365-y PubMed DOI PMC

Kentie, R., Morgan Brown, J., Camphuysen, K. C. J. and Shamoun-Baranes, J. (2023). Distance doesn't matter: migration strategy in a seabird has no effect on survival or reproduction. Proc. R. Soc. B Biol. Sci. 290, 20222408. 10.1098/rspb.2022.2408 PubMed DOI PMC

Kooyman, G. L. (2004). Genesis and evolution of bio-logging devices: l963-2002. Mem. Natl. Inst. Polar Res. Spec. Issue 58, 15-22.

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M. and Kays, R. (2011). The Movebank data model for animal tracking. Environ. Model. Softw. 26, 834-835. 10.1016/j.envsoft.2010.12.005 DOI

Laws, R. M., Parker, I. S. and Johnstone, R. C. (1975). Elephants and their habitats. The ecology of elephants in North Bunyoro, Uganda. Afr. J. Ecol. 8, 163-180. 10.1111/j.1365-2028.1970.tb00838.x DOI

Levin, S. C., Evers, S., Potter, T., Guerrero, M. P., Childs, D. Z., Compagnoni, A., Knight, T. M. and Salguero-Gómez, R. (2022). Rpadrino: an R package to access and use PADRINO, an open access database of integral projection models. Methods Ecol. Evol. 13, 1923-1929. 10.1111/2041-210X.13910 DOI

Lindstedt, S. L. and Calder, W. A. (1981). Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 1-16. 10.1086/412080 DOI

Martins, P. M., Anderson, M. J., Sweatman, W. L. and Punnett, A. J. (2024). Significant shifts in latitudinal optima of North American birds. Proc. Natl. Acad. Sci. USA 121, e2307525121. 10.1073/pnas.2307525121 PubMed DOI PMC

Mathot, K. J., Dingemanse, N. J. and Nakagawa, S. (2019). The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta-analytic insights. Biol. Rev. 94, 1056-1074. 10.1111/brv.12491 PubMed DOI

McLean, B. S. and Guralnick, R. P. (2021). Digital biodiversity data sets reveal breeding phenology and its drivers in a widespread North American mammal. Ecology 102, e03258. 10.1002/ecy.3258 PubMed DOI

McLean, B. S., Barve, N. and Guralnick, R. P. (2022). Sex-specific breeding phenologies in the North American deer mouse (Peromyscus maniculatus). Ecosphere 13, e4327. 10.1002/ecs2.4327 DOI

McNab, B. K. (2008). An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 151, 5-28. 10.1016/j.cbpa.2008.05.008 PubMed DOI

Mundy, P., Butchart, D., Ledger, J. and Piper, S. (1992). The Vultures of Africa. Randburg and Halfway House.

Myhrvold, N. P., Baldridge, E., Chan, B., Sivam, D., Freeman, D. L. and Ernest, S. K. M. (2015). An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109-3109. 10.1890/15-0846R.1 DOI

Nagy, K. A., Girard, I. A. and Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247-277. 10.1146/annurev.nutr.19.1.247 PubMed DOI

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. and Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA 105, 19052-19059. 10.1073/pnas.0800375105 PubMed DOI PMC

Neate-Clegg, M. H. C., Tonelli, B. A., Youngflesh, C., Wu, J. X., Montgomery, G. A., Şekercioğlu, Ç. H. and Tingley, M. W. (2023). Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677-1688.e6. 10.1016/j.cub.2023.03.024 PubMed DOI

Odlyzko, A. (2002). The rapid evolution of scholarly communication. Learn. Publ. 15, 7-19. 10.1087/095315102753303634 DOI

Paniw, M., James, T. D., Ruth Archer, C., Römer, G., Levin, S., Compagnoni, A., Che-Castaldo, J., Bennett, J. M., Mooney, A., Childs, D. Z.et al. (2021). The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: a global analysis. J. Anim. Ecol. 90, 1398-1407. 10.1111/1365-2656.13467 PubMed DOI

Passoni, G., Coulson, T., Ranc, N., Corradini, A., Hewison, A. J. M., Ciuti, S., Gehr, B., Heurich, M., Brieger, F., Sandfort, R.et al. (2021). Roads constrain movement across behavioural processes in a partially migratory ungulate. Mov. Ecol. 9, 57. 10.1186/s40462-021-00292-4 PubMed DOI PMC

Payne, A., Hale, C., Kendall-Bar, J. and Beltran, R. S. (2024). Minimum reporting standards can promote animal welfare and data quality in biologging research. EcovoRxiv 10.32942/X29K7X DOI

Pierce, A. K., Yanco, S. W. and Wunder, M. B. (2024). Seasonal migration alters energetic trade-off optimization and shapes life history. Ecol. Lett. 27, e14392. 10.1111/ele.14392 PubMed DOI

Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C. and Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230-239. 10.1038/s41559-019-1070-4 PubMed DOI

Pottier, P., Noble, D. W. A., Seebacher, F., Wu, N. C., Burke, S., Lagisz, M., Schwanz, L. E., Drobniak, S. M. and Nakagawa, S. (2024). New horizons for comparative studies and meta-analyses. Trends Ecol. Evol. 39, 435-445. 10.1016/j.tree.2023.12.004 PubMed DOI

Ramachandran, R., Bugbee, K. and Murphy, K. (2021). From open data to open science. Earth Space Sci. 8, e2020EA001562. 10.1029/2020EA001562 DOI

Reboredo Segovia, A. L., Romano, D. and Armsworth, P. R. (2020). Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159-166. 10.1002/fee.2146 DOI

Ropert-Coudert, Y., Van de Putte, A. P., Reisinger, R. R., Bornemann, H., Charrassin, J.-B., Costa, D. P., Danis, B., Hückstädt, L. A., Jonsen, I. D., Lea, M.-A.et al. (2020). The retrospective analysis of Antarctic tracking data project. Sci. Data 7, 94. 10.1038/s41597-020-0406-x PubMed DOI PMC

Ruckstuhl, K. E. and Neuhaus, P. (2000). Sexual segregation in ungulates: a new approach. Behaviour 137, 361-377. 10.1163/156853900502123 DOI

Rutz, C. (2022). Register animal-tracking tags to boost conservation. Nature 609, 221-221. 10.1038/d41586-022-02821-6 PubMed DOI

Rutz, C. and Hays, G. C. (2009). New frontiers in biologging science. Biol. Lett. 5, 289-292. 10.1098/rsbl.2009.0089 PubMed DOI PMC

Salguero-Gómez, R., Jones, O. R., Archer, C. R., Bein, C., de Buhr, H., Farack, C., Gottschalk, F., Hartmann, A., Henning, A., Hoppe, G.et al. (2016). COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371-384. 10.1111/1365-2656.12482 PubMed DOI PMC

Salguero-Gómez, R., Jackson, J. and Gascoigne, S. J. L. (2021). Four key challenges in the open-data revolution. J. Anim. Ecol. 90, 2000-2004. 10.1111/1365-2656.13567 PubMed DOI PMC

Santini, L., Isaac, N. J. B. and Ficetola, G. F. (2018). TetraDENSITY: a database of population density estimates in terrestrial vertebrates. Glob. Ecol. Biogeogr. 27, 787-791. 10.1111/geb.12756 DOI

Sawyer, H., LeBeau, C. W., McDonald, T. L., Xu, W. and Middleton, A. D. (2019). All routes are not created equal: an ungulate's choice of migration route can influence its survival. J. Appl. Ecol. 56, 1860-1869. 10.1111/1365-2664.13445 DOI

Schneider, F. D., Fichtmueller, D., Gossner, M. M., Güntsch, A., Jochum, M., König-Ries, B., Le Provost, G., Manning, P., Ostrowski, A., Penone, C.et al. (2019). Towards an ecological trait-data standard. Methods Ecol. Evol. 10, 2006-2019. 10.1111/2041-210X.13288 DOI

Sequeira, A. M. M., O'Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., Jaine, F. R. A., Jonsen, I. D., Newman, P., Pye, J.et al. (2021). A standardisation framework for bio-logging data to advance ecological research and conservation. Methods Ecol. Evol. 12, 996-1007. 10.1111/2041-210X.13593 DOI

Sheard, C., Neate-Clegg, M. H. C., Alioravainen, N., Jones, S. E. I., Vincent, C., MacGregor, H. E. A., Bregman, T. P., Claramunt, S. and Tobias, J. A. (2020). Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. 10.1038/s41467-020-16313-6 PubMed DOI PMC

Sillett, T. S. and Holmes, R. T. (2002). Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71, 296-308. 10.1046/j.1365-2656.2002.00599.x DOI

Skinner, J. D. and Chimimba, C. T. (2005). The Mammals of the Southern African Sub-Region. Cambridge University Press.

Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H. and Haskell, J. P. (2003). Body mass of late quaternary mammals. Ecology 84, 3403-3403. 10.1890/02-9003 DOI

Soria, C. D., Pacifici, M., Di Marco, M., Stephen, S. M. and Rondinini, C. (2021). COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. Ecology 102, e03344. 10.1002/ecy.3344 PubMed DOI

Streit, R. P. and Bellwood, D. R. (2023). To harness traits for ecology, let's abandon ‘functionality.’ Trends Ecol. Evol. 38, 402-411. 10.1016/j.tree.2022.11.009 PubMed DOI

Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T. and Emmerson, M. C.et al. (2013). Identification of 100 fundamental ecological questions. J. Ecol. 101, 58-67. 10.1111/1365-2745.12025 DOI

Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J., Fraifeld, V. E. and de Magalhães, J. P. (2013). Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027-D1033. 10.1093/nar/gks1155 PubMed DOI PMC

Teitelbaum, C. S., Fagan, W. F., Fleming, C. H., Dressler, G., Calabrese, J. M., Leimgruber, P. and Mueller, T. (2015). How far to go? Determinants of migration distance in land mammals. Ecol. Lett. 18, 545-552. 10.1111/ele.12435 PubMed DOI

Titley, M. A., Snaddon, J. L. and Turner, E. C. (2017). Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One 12, e0189577. 10.1371/journal.pone.0189577 PubMed DOI PMC

Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A.et al. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597. 10.1111/ele.13898 PubMed DOI

Tombak, K. J., Hex, S. B. S. W. and Rubenstein, D. I. (2024). New estimates indicate that males are not larger than females in most mammal species. Nat. Commun. 15, 1872. 10.1038/s41467-024-45739-5 PubMed DOI PMC

Trimble, M. J. and van Aarde, R. J. (2012). Geographical and taxonomic biases in research on biodiversity in human-modified landscapes. Ecosphere 3, art119. 10.1890/ES12-00299.1 DOI

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. and Legendre, F. (2017). Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132. 10.1038/s41598-017-09084-6 PubMed DOI PMC

Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N., Avgar, T.et al. (2018). Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466-469. 10.1126/science.aam9712 PubMed DOI

Upham, N. S., Esselstyn, J. A. and Jetz, W. (2019). Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494. 10.1371/journal.pbio.3000494 PubMed DOI PMC

Urbano, F., Cagnacci, F. and Initiative, E. C. (2021). Data management and sharing for collaborative science: lessons learnt from the Euromammals initiative. Front. Ecol. Evol. 9, 727023. 10.3389/fevo.2021.727023 DOI

van der Kolk, H.-J., Desmet, P., Oosterbeek, K., Allen, A. M., Baptist, M. J., Bom, R. A., Davidson, S. C., de Jong, J., de Kroon, H., Dijkstra, B.et al. (2022). GPS tracking data of Eurasian oystercatchers (Haematopus ostralegus) from the Netherlands and Belgium. ZooKeys 1123, 31-45. 10.3897/zookeys.1123.90623 PubMed DOI PMC

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. and Garnier, E. (2007). Let the concept of trait be functional!. Oikos 116, 882-892. 10.1111/j.0030-1299.2007.15559.x DOI

Watanabe, Y. Y. and Papastamatiou, Y. P. (2023). Biologging and biotelemetry: tools for understanding the lives and environments of marine animals. Annu. Rev. Anim. Biosci. 11, 247-267. 10.1146/annurev-animal-050322-073657 PubMed DOI

Weeks, B. C., Willard, D. E., Zimova, M., Ellis, A. A., Witynski, M. L., Hennen, M. and Winger, B. M. (2020). Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316-325. 10.1111/ele.13434 PubMed DOI

Weeks, B. C., O'Brien, B. K., Chu, J. J., Claramunt, S., Sheard, C. and Tobias, J. A. (2022). Morphological adaptations linked to flight efficiency and aerial lifestyle determine natal dispersal distance in birds. Funct. Ecol. 36, 1681-1689. 10.1111/1365-2435.14056 DOI

Weeks, B. C., Zhou, Z., O'Brien, B. K., Darling, R., Dean, M., Dias, T., Hassena, G., Zhang, M. and Fouhey, D. F. (2023). A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347-359. 10.1111/2041-210X.13864 DOI

Weller, A. K., Chapman, O. S., Gora, S. L., Guralnick, R. P. and McLean, B. S. (2024). New insight into drivers of mammalian litter size from individual-level traits. Ecography 2024, e06928. 10.1111/ecog.06928 DOI

White, C. R., Marshall, D. J., Chown, S. L., Clusella-Trullas, S., Portugal, S. J., Franklin, C. E. and Seebacher, F. (2021). Geographical bias in physiological data limits predictions of global change impacts. Funct. Ecol. 35, 1572-1578. 10.1111/1365-2435.13807 DOI

Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. and Vieglais, D. (2012). Darwin core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715. 10.1371/journal.pone.0029715 PubMed DOI PMC

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., de Grissac, S., Demšar, U., English, H. M., Franconi, N., Gómez-Laich, A.et al. (2020). Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. 89, 186-206. 10.1111/1365-2656.13094 PubMed DOI PMC

Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M. and Jetz, W. (2014). EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027-2027. 10.1890/13-1917.1 DOI

Winger, B. M. and Pegan, T. M. (2021). Migration distance is a fundamental axis of the slow-fast continuum of life history in boreal birds. Ornithology 138, ukab043. 10.1093/ornithology/ukab043 DOI

Wu, N. C. and Seebacher, F. (2022). Physiology can predict animal activity, exploration, and dispersal. Commun. Biol. 5, 109. 10.1038/s42003-022-03055-y PubMed DOI PMC

Zheng, S., Hu, J., Ma, Z., Lindenmayer, D. and Liu, J. (2023). Increases in intraspecific body size variation are common among North American mammals and birds between 1880 and 2020. Nat. Ecol. Evol. 7, 347-354. 10.1038/s41559-022-01967-w PubMed DOI

Zimova, M., Weeks, B. C., Willard, D. E., Giery, S. T., Jirinec, V., Burner, R. C. and Winger, B. M. (2023). Body size predicts the rate of contemporary morphological change in birds. Proc. Natl. Acad. Sci. USA 120, e2206971120. 10.1073/pnas.2206971120 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...