Six-Degree-of-Freedom Steerable Visible-Light-Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33945209
DOI
10.1002/smll.202100294
Knihovny.cz E-zdroje
- Klíčová slova
- explosive decontamination, micromotor, six degrees of freedom, visible-light-driven, water fuel,
- MeSH
- dekontaminace MeSH
- světlo MeSH
- voda * MeSH
- vodík MeSH
- výbušné látky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda * MeSH
- vodík MeSH
- výbušné látky * MeSH
Micro/nanomotors are capable of a wide variety of tasks related, i.e., to biomedical or environmental applications. Light-driven semiconductor-based micromotors are especially appealing, as they can split surrounding water via light irradiation, and therefore, they can move infinitely. However, their motion is typically limited to in-plane motion with four degrees of freedom (4DoF) or even pseudo-1D motion with 2DoF. Herein, magnetically steerable tubular TiO2 /Fe3 O4 /CdS micromotors, termed microsubmarines, with 6DoF motion, based on a fuel-free design where surrounding water acts as fuel upon visible light irradiation, are presented, with an average velocity of 7.9 µm s-1 . Besides, the generation of radicals via such water splitting aids the photocatalytic chemicals degradation with the potential to use solar radiation. A light-induced self-electrophoretic mechanism is responsible for the self-propulsion and can be used to predict the motion direction based on the structure and composition. Finally, the TiO2 /Fe3 O4 /CdS microsubmarines are tested in a proof-of-concept application of high-energy explosive, e.g., picric acid, photocatalytic degradation, with the best performance owing to the versatility of 6DoF motion, the surface coating with amorphous TiO2 layer, and UV light. The results can help optimize light-active micromotor design for potential national security and environmental application, hydrogen evolution, and target cargo delivery.
Zobrazit více v PubMed
Y. Y. Sun, Y. Liu, B. Song, H. Zhang, R. M. Duan, D. F. Zhang, B. Dong, Adv. Mater. Interfaces 2019, 6, 1801965.
H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Nanoscale 2017, 9, 12218.
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sanchez, J. Am. Chem. Soc. 2018, 140, 9317.
Y. Ying, M. Pumera, Chem 2019, 25, 106.
K. Villa, M. Pumera, Chem. Soc. Rev. 2019, 48, 4966.
H. Sipova-Jungova, D. Andren, S. Jones, M. Kall, Chem. Rev. 2020, 120, 269.
W. P. He, J. Frueh, N. Hu, L. P. Liu, M. Y. Gai, Q. He, Adv. Sci. 2016, 3, 1600206.
a) W. P. He, J. Frueh, Z. W. Wu, Q. He, Langmuir 2016, 32, 3637;
b) S. Rutkowski, T. Si, M. Gai, M. Sun, J. Frueh, Q. He, J. Colloid Interface Sci. 2019, 25, 752.
D. Zhou, R. Zhuang, X. Chang, L. Li, Research 2020, 2020, 6821595.
L. L. Xu, F. Z. Mou, H. T. Gong, M. Luo, J. G. Guan, Chem. Soc. Rev. 2017, 46, 6905.
R. F. Dong, Q. L. Zhang, W. Gao, A. Pei, B. Y. Ren, ACS Nano 2016, 10, 839.
R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.
K. Villa, F. Novotny, J. Zelenka, M. P. Browne, T. Ruml, M. Pumera, ACS Nano 2019, 13, 8135.
D. K. Zhou, Y. G. C. Li, P. T. Xu, N. S. McCool, L. Q. Li, W. Wang, T. E. Mallouk, Nanoscale 2017, 9, 75.
A. M. Pourrahimi, K. Villa, C. L. M. Palenzuela, Y. L. Ying, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1808678.
Y. L. Ying, A. M. Pourrahimi, C. L. Manzanares-Palenzuela, F. Novotny, Z. Sofer, M. Pumera, Small 2020, 16, 1902944.
S. N. Du, H. G. Wang, C. Zhou, W. Wang, Z. X. Zhang, J. Am. Chem. Soc. 2020, 142, 2213.
K. Villa, C. L. M. Palenzuela, Z. Sofer, S. Matejkova, M. Pumera, ACS Nano 2018, 12, 12482.
V. Sridhar, B. W. Park, S. R. Guo, P. A. van Aken, M. Sitti, ACS Appl. Mater. Interfaces 2020, 12, 24149.
X. Wang, L. Baraban, A. Nguyen, J. Ge, V. R. Misko, J. Tempere, F. Nori, P. Formanek, T. Huang, G. Cuniberti, J. Fassbender, D. Makarov, Small 2018, 14, 1803613.
D. O. Adekoya, M. Tahir, N. A. S. Amin, J. CO2 Util. 2017, 18, 261.
R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, Oxford University Press, Oxford 1995.
X. He, R. Buchel, R. Figi, Y. C. Zhang, Y. Bahk, J. Ma, J. Wang, Chemosphere 2019, 219, 427.
A. M. Pourrahimi, K. Villa, Y. L. Ying, Z. Sofer, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 42688.
A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol., C 2000, 1, 1.
C. Venkatareddy, N. Bandaru, I. N. Reddy, J. Shim, K. Yoo, Mater. Sci. Eng., B 2018, 232, 68.
J. M. Xu, H. X. Sang, X. T. Wang, K. Wang, Dalton Trans. 2015, 44, 9528.
Y. X. Yu, W. X. Ouyang, Z. T. Liao, B. B. Du, W. D. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 8467.
Y. Ying, T. Song, H. Huang, X. Peng, Appl. Phys. A 2013, 110, 351.
Y. T. Guo, D. C. Wang, J. A. Li, Y. Y. Sun, M. T. Li, H. Zhang, R. M. Duan, D. F. Zhang, B. Song, B. Dong, J. Mater. Chem. C 2019, 7, 2299.
S. S. Xiao, L. Zhao, X. N. Leng, X. Y. Lang, J. S. Lian, Appl. Surf. Sci. 2014, 299, 97.
S. Tso, W. S. Li, B. H. Wu, L. J. Chen, Nano Energy 2018, 43, 270.
L. X. Zheng, F. Teng, X. Y. Ye, H. J. Zheng, X. S. Fang, Adv. Energy Mater. 2020, 10, 1902355.
J. S. Luo, L. Ma, T. C. He, C. F. Ng, S. J. Wang, H. D. Sun, H. J. Fan, J. Phys. Chem. C 2012, 116, 11956.
Z. M. Bai, X. Q. Yan, Y. Li, Z. Kang, S. Y. Cao, Y. Zhang, Adv. Energy Mater. 2016, 6, 1501459.
B. H. Dai, J. Z. Wang, Z. Xiong, X. J. Zhan, W. Dai, C. C. Li, S. P. Feng, J. Y. Tang, Nat. Nanotechnol. 2016, 11, 1087.
L. Kong, C. C. Mayorga-Martinez, J. G. Guan, M. Pumera, Small 2020, 16, 1903179.
X. Zhan, J. Wang, Z. Xiong, X. Zhang, Y. Zhou, J. Zheng, J. Chen, S. P. Feng, J. Tang, Nat. Commun. 2019, 10, 3921.
K. L. Lv, Y. M. Xu, J. Phys. Chem. B 2006, 110, 6204.
B. H. Bielski, D. E. Cabelli, Active Oxygen in Chemistry, Springer, Berlin 1995, pp. 66-104.
V. Rajendran, M. Lehnig, C. M. Niemeyer, J. Mater. Chem. 2009, 19, 6348.
H. Wang, Q. Xu, X. Zheng, W. Q. Han, J. T. Zheng, B. Jiang, Q. Z. Xue, M. B. Wu, J. Nanopart. Res. 2014, 16, 2794.
F. Xu, Y. F. Yuan, H. J. Han, D. P. Wu, Z. Y. Gao, K. Jiang, CrystEngComm 2012, 14, 3615.
C. H. Chen, Z. C. Li, H. N. Lin, G. J. Wang, J. C. Liao, M. Y. Li, S. S. Lv, W. Li, Dalton Trans. 2016, 45, 3750.
R. C. Pawar, C. S. Lee, Appl. Catal., B 2014, 144, 57.
S. Wang, B. C. Zhu, M. J. Liu, L. Y. Zhang, J. G. Yu, M. H. Zhou, Appl. Catal., B 2019, 243, 19.
M. Buchalska, M. Kobielusz, A. Matuszek, M. Pacia, S. Wojtyla, W. Macyk, ACS Catal. 2015, 5, 7424.
M. Hayyan, M. A. Hashim, I. M. AlNashef, Chem. Rev. 2016, 116, 3029.
Y. Nosaka, S. Takahashi, H. Sakamoto, A. Y. Nosaka, J. Phys. Chem. C 2011, 115, 21283.
E. Simonenko, A. Gomonov, N. Rolle, L. Molodkina, Proc. Eng. 2015, 117, 337.
A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, B. Cheng, Appl. Surf. Sci. 2017, 422, 518.
Q. Yang, Y. L. Li, Z. G. Hu, Z. H. Duan, P. P. Liang, J. Sun, N. Xu, J. D. Wu, Opt. Express 2014, 22, 8617.
Y. L. Ying, A. M. Pourrahimi, Z. Sofer, S. Matejkova, M. Pumera, ACS Nano 2019, 13, 11477.
Technology Roadmap of Micro/Nanorobots
Trapping and detecting nanoplastics by MXene-derived oxide microrobots