Light-Programmable g-C3N4 Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation

. 2025 ; 8 () : 0565. [epub] 20250128

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39877466

Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-C3N4 is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO2 and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-C3N4 for these applications is still in its early stages. This work presents microrobots entirely based on g-C3N4 microtubes, which can initiate autonomous movement when exposed to ultraviolet and visible light. We observed distinct motion behaviors of the microrobots under light irradiation of different wavelengths. Specifically, under ultraviolet light, the microrobots exhibit negative photogravitaxis, while under visible light, they demonstrate a combination of 3-dimensional motion and 2-dimensional motion. Therefore, the wavelength of the light can be used for programming the motion style of the microrobots and subsequently their application. We show that the microrobots can effectively degrade the antibiotic tetracycline, displaying their potential for antibiotic removal. This exploration of autonomous motion behaviors under different wavelength conditions helps to expand research on g-C3N4-based microrobots and their potential for environmental remediation.

Zobrazit více v PubMed

Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Rob. 2017;2(4): Article eaam6431. PubMed PMC

Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater. 2018;3(6):113–124.

Mayorga-Martinez CC, Pumera M. Self-propelled tags for protein detection. Adv Funct Mater. 2019;30(6): Article 1906449.

Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for “chemistry-on-the-fly”. J Am Chem Soc. 2018;140(11):3810–3820. PubMed

Chen C, Ding S, Wang J. Materials consideration for the design, fabrication and operation of microscale robots. Nat Rev Mater. 2024;9(3):159–172.

Parmar J, Vilela D, Villa K, Wang J, Sánchez S. Micro- and nanomotors as active environmental microcleaners and sensors. J Am Chem Soc. 2018;140(30):9317–9331. PubMed

Ying Y, Plutnar J, Pumera M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small. 2021;17(23): Article 2100294. PubMed

Vutukuri HR, Lisicki M, Lauga E, Vermant J. Light-switchable propulsion of active particles with reversible interactions. Nat Commun. 2020;11(1): Article 2628. PubMed PMC

He X, Jiang H, Li J, Ma Y, Fu B, Hu C. Dipole-moment induced phototaxis and fuel-free propulsion of ZnO/Pt Janus micromotors. Small. 2021;17(31): Article 2101388. PubMed

Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D motion manipulation for micro- and nanomachines: Progress and future directions. Adv Mater. 2024;36(1): Article 2305925. PubMed

Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid field modulation in mass transfer for efficient photocatalysis. Adv Sci. 2022;9(28): Article 2203057. PubMed PMC

Chen X, Ding X, Liu Y, Li J, Liu W, Lu X, Gu Z. Highly efficient visible-light-driven Cu2O@CdSe micromotors adsorbent. Appl Mater Today. 2021;25: Article 101200.

Rojas D, Kuthanova M, Dolezelikova K, Pumera M. Facet nanoarchitectonics of visible-light driven Ag3PO4 photocatalytic micromotors: Tuning motion for biofilm eradication. NPG Asia Mater. 2022;14: Article 63.

Mayorga-Burrezo P, Mayorga-Martinez CC, Pumera M. Light-driven micromotors to dissociate protein aggregates that cause neurodegenerative diseases. Adv Funct Mater. 2021;32(1): Article 2106699.

Fu J, Yu J, Jiang C, Cheng B. g-C3N4 based heterostructured photocatalysts. Adv Energy Mater. 2017;8(3): Article 1701503.

Wang N, Cheng L, Liao Y, Xiang Q. Effect of functional group modifications on the photocatalytic performance of g-C3N4. Small. 2023;19(27): Article 2300109. PubMed

Rayaroth MP, Lee G, Chang Y-S. Recent developments in graphitic carbon nitride (g-C3N4) applications in micromotors. Results Eng. 2024;22: Article 102244.

Villa K, Manzanares Palenzuela CL, Sofer Z, Matějková S, Pumera M. Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano. 2018;12(12):12482–12491. PubMed

Ye Z, Sun Y, Zhang H, Song B, Dong B. A phototactic micromotor based on platinum nanoparticle decorated carbon nitride. Nanoscale. 2017;9(46):18516–18522. PubMed

Song X, Tao Y, Liu J, Lin J, Dai P, Wang Q, Li W, Chen W, Zheng C. Photocatalytic-induced bubble-propelled isotropic g-C3N4-coated carbon microsphere micromotors for dynamic removal of organic pollutants. RSC Adv. 2022;12(21):13116–13126. PubMed PMC

Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed Engl. 2016;55(5):1830–1834. PubMed

Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater. 2015;27(13):2150–2176. PubMed

Zhang L, Ding N, Hashimoto M, Iwasaki K, Chikamori N, Nakata K, Xu Y, Shi J, Wu H, Luo Y, et al. . Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Res. 2018;11(4):2295–2309.

Yang Y, Liu J, Zhou C, Zhang P, Guo S, Li S, Meng X, Lu Y, Xu H, Ma H, et al. . In situ self-assembly synthesis of carbon self-doped graphite carbon nitride hexagonal tubes with enhanced photocatalytic hydrogen evolution. Int J Hydrog Energy. 2019;44(50):27354–27362.

Liu D, Chen D, Li N, Xu Q, Li H, He J, Lu J. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew Chem Int Ed Engl. 2020;59(11):4519–4524. PubMed

Li X, Qiu Y, Zhu Z, Zhang H, Yin D. Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem Eng J. 2022;429: Article 132130.

Li C, Tian Q, Zhang Y, Li Y, Yang X, Zheng H, Chen L, Li F. Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water Res. 2022;210: Article 117985. PubMed

Zhang Y, Chen Z, Li J, Lu Z, Wang X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J Energy Chem. 2021;54:36–44.

Gashi A, Parmentier J, Fioux P, Marsalek R. Tuning the C/N ratio of C-rich graphitic carbon nitride (g-C3N4) materials by the melamine/carboxylic acid adduct route. Chemistry. 2022;28(14): Article e202103605. PubMed

Makula P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J Phys Chem Lett. 2018;9(23):6814–6817. PubMed

Tay Q, Kanhere P, Ng CF, Chen S, Chakraborty S, Huan ACH, Sum TC, Ahuja R, Chen Z. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem Mater. 2015;27(14):4930–4933.

Mohamed MA, Zain MFM, Minggu LJ, Kassim MB, Amin NAS, Salleh WNW, Salehmin MNI, Nasir MFM, Hir ZAM. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation. Appl Catal B Environ. 2018;236:265–279.

Liu X, Kang W, Zeng W, Zhang Y, Qi L, Ling F, Fang L, Chen Q, Zhou M. Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles hybrid functional investigation. Appl Surf Sci. 2020;499: Article 143994.

Jancik-Prochazkova A, Kmentova H, Ju X, Kment S, Zboril R, Pumera M. Precision engineering of nanorobots: Toward single atom decoration and defect control for enhanced microplastic capture. Adv Funct Mater. 2024;34(38): Article 2402567.

Urso M, Ussia M, Novotný F, Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat Commun. 2022;13(1): Article 3573. PubMed PMC

Stoll S, Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson. 2006;178(1):42–55. PubMed

Zhao H, Joseph J, Zhang H, Karoui H, Kalyanaraman B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: A relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol Med. 2001;31:599–606. PubMed

Misak A, Brezova V, Chovanec M, Luspai K, Nasim MJ, Grman M, Tomasova L, Jacob C, Ondrias K. EPR study of KO2 as a source of superoxide and •BMPO-OH/OOH radical that cleaves plasmid DNA and detects radical interaction with H2S and Se-derivatives. Antioxidants. 2021;10(8): Article 1286. PubMed PMC

Feng K, Gong J, Qu J, Niu R. Dual-mode-driven micromotor based on foam-like carbon nitride and Fe3O4 with improved manipulation and photocatalytic performance. ACS Appl Mater Interfaces. 2022;14(39):44271–44281. PubMed

Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X, Dong H. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ. 2016;182:115–122.

Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P. Photogravitactic microswimmers. Adv Funct Mater. 2018;28(25): Article 1706660.

Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. Inorg Chem Commun. 2022;145: Article 109959.

Zheng Q, Durkin DP, Elenewski JE, Sun Y, Banek NA, Hua L, Chen H, Wagner MJ, Zhang W, Shuai D. Visible-light-responsive graphitic carbon nitride: Rational design and photocatalytic applications for water treatment. Environ Sci Technol. 2016;50(23):12938–12948. PubMed

Xing J, Huang X, Yong X, Li X, Li J, Wang J, Wang N, Hao H. N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem Eng J. 2023;455: Article 140570.

Gao S, Chen X, Fang X, Cheng Z, Wang Y, Gao D, Guo Q, Wang L, Hu X. Photocatalytic degradation of tetracycline by g-C3N4/stilbite under visible light: Mechanistic insights and degradation pathways. Mater Res Bull. 2024;180: Article 113008.

Sun H, Guo F, Pan J, Huang W, Wang K, Shi W. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem Eng J. 2021;406: Article 126844.

Luo Y, Zhu Y, Han Y, Ye H, Liu R, Lan Y, Xue M, Xie X, Yu S, Zhang L, et al. . g-C3N4-based photocatalysts for organic pollutant removal: A critical review. Carbon Res. 2023;2(1): Article 14.

He D, Yang H, Jin D, Qu J, Yuan X, Zhang Y-N, Huo M, Peijnenburg WJGM. Rapid water purification using modified graphitic carbon nitride and visible light. Appl Catal B Environ. 2021;285: Article 119864.

Yan W, Yan L, Jing C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Appl Catal B Environ. 2019;244:475–485.

Ju Y, Li H, Wang Z, Liu H, Huo S, Jiang S, Duan S, Yao Y, Lu X, Chen F. Solar-driven on-site H2O2 generation and tandem photo-Fenton reaction on a triphase interface for rapid organic pollutant degradation. Chem Eng J. 2022;430(Pt 4): Article 133168.

Zhang H, Li W, Yan Y, Wang W, Ren Y, Li X. Synthesis of highly porous g-C3N4 nanotubes for efficient photocatalytic degradation of sulfamethoxazole. Mater Today Commun. 2021;27: Article 102288.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...