Tuning the C/N Ratio of C-Rich Graphitic Carbon Nitride (g-C3 N4 ) Materials by the Melamine/Carboxylic Acid Adduct Route
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
- Keywords
- adducts, carbon-rich g-C3N4, carbonitrides, doping, supramolecular chemistry,
- Publication type
- Journal Article MeSH
C-rich graphitic carbonitride materials (CNx ) with a large range of compositions have been prepared thanks to the self-assembly, in different ratios, of melamine (M) and a panel of polycarboxylic acids (A) such as oxalic, tartaric and citric acid. The thermal conversion of the formed adducts (MAy ), led to CNx phases, with x ranging from 0.66 to 1.4 (x=1.33 for g-C3 N4 for comparison). The properties of these materials were examined by different techniques (XRD, Raman spectroscopy, TEM, TGA, XPS and DRIFT). It appears that the increase in the C content is associated with the disappearance of the long-range order of heptazine units and an increase in the sub-nanometer carbon-rich cluster size within the graphitic g-C3 N4 structure. This trend is followed by a significant increase in the interlayer spacing and a lower proportion of N=C-N bonds compared to C=C bonds. The thermal stability under an inert atmosphere of these phases and their UV-Visible absorbance properties were also investigated.
See more in PubMed
M. Inagaki, T. Tsumura, T. Kinumoto, M. Toyoda, Carbon 2019, 141, 580-607.
P. Kumar, E. Vahidzadeh, U. K. Thakur, P. Kar, K. M. Alam, A. Goswami, N. Mahdi, K. Cui, G. M. Bernard, V. K. Michaelis, K. Shankar, J. Am. Chem. Soc. 2019, 141, 5415-5436.
L. Peng, R. Zheng, D. Feng, H. Yu, X. Dong, Arab. J. Chem. 2020, 13, 4275-4285.
Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68-89;
Angew. Chem. 2012, 124, 70-92.
G.-M. Weng, Y. Xie, H. Wang, C. Karpovich, J. Lipton, J. Zhu, J. Kong, L. D. Pfefferle, A. D. Taylor, Angew. Chem. Int. Ed. 2019, 58, 13727-13733;
Angew. Chem. 2019, 131, 13865-13871.
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908.
N. M. R. Peres, Europhys. News 2009, 40, 17-20.
J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Carbon 2020, 163, 154-161.
Y. Hu, H. Liu, Q. Ke, J. Wang, J. Mater. Chem. A 2014, 2, 11753-11758.
J. Fang, H. Fan, M. Li, C. Long, J. Mater. Chem. A 2015, 3, 13819-13826.
S. Zhang, S. Tsuzuki, K. Ueno, K. Dokko, M. Watanabe, Angew. Chem. Int. Ed. 2015, 54, 1302-1306;
Angew. Chem. 2015, 127, 1318-1322.
J. P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 87-92.
T. Katoh, G. Imamura, S. Obata, K. Saiki, RSC Adv. 2016, 6, 13392-13398.
Y. Wang, X. Bai, H. Qin, F. Wang, Y. Li, X. Li, S. Kang, Y. Zuo, L. Cui, ACS Appl. Mater. Interfaces 2016, 8, 17212-17219.
Z. Chen, T. Fan, J. Zhao, X. Yu, Q.-L. Wu, Q.-H. Zhu, L.-Z. Zhang, J. Mater. Chem. A 2018, 1-3, 15310-15319.
H. Dong, X. Guo, C. Yang, Z. Ouyang, Appl. Catal. B 2018, 230, 65-76.
K. Wang, X. Wang, H. Pan, Y. Liu, S. Xu, S. Cao, Int. J. Hydrogen Energy 2018, 43, 91-99.
R. Kumar, M. A. Barakat, F. A. Alseroury, Sci. Rep. 2017, 7,12850.
W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun, S. Wei, J. Am. Chem. Soc. 2017, 139, 3021-3026.
Y.-S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater. 2013, 23, 3661-3667.
S. Dolai, J. Barrio, G. Peng, A. Grafmüller, M. Shalom, Nanoscale 2019, 11, 5564-5570.
N. Vu, C. Nguyen, S. Kaliaguine, T. Do, ChemSusChem 2019, 12, 291-302.
Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chem. Soc. Rev. 2018, 47, 2298-2321.
X. Zhang, Chem. Res. Chin. Univ. 2008, 24, 396-400.
X. Han, L. Tian, H. Jiang, L. Kong, J. Lv, J. Shan, J. Wang, X. Fan, RSC Adv. 2017, 7, 14372-14381.
G. J. Perpétuo, J. Janczak, J. Mol. Struct. 2008, 891, 429-436.
C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, X. Wen, L. Qin, Appl. Catal. B 2018, 220, 202-210.
X. Fang, R. Gao, Y. Yang, D. Yan, iScience 2019, 16, 22-30.
X. Yuan, K. Luo, K. Zhang, J. He, Y. Zhao, D. Yu, J. Phys. Chem. A 2016, 120, 7427-7433.
S. Sarkar, S. Dutta, C. Ray, B. Dutta, J. Chowdhury, T. Pal, CrystEngComm 2015, 17, 8119-8129.
X.-L. Zhang, X.-M. Chen, Cryst. Growth Des. 2005, 5, 617-622.
P. J. Larkin, M. P. Makowski, N. B. Colthup, Spectrochim. Acta Part A 1999, 55, 1011-1020.
S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2009, 25, 10397-10401.
D. J. Miller, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 2002, 33, 299-305.
H.-J. Li, B.-W. Sun, L. Sui, D.-J. Qian, M. Chen, Phys. Chem. Chem. Phys. 2015, 17, 3309-3315.
N. D. Shcherban, P. Maki-Arvela, A. Aho, S. A. Sergiienko, P. S. Yaremov, K. Eranen, D. Yu, Murzin, Catal. Sci. Technol. 2016, 6, 73-80.
W. Zhang, L. Zhou, H. Deng, Mol. Catal. A: Chem. 2016, 423, 270-276.
T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, Chem. Mater. 2005, 17, 1290-1295.
G. Camino, L. Operti, L. Trossarelli, Polym. Degrad. Stab. 1983, 5, 161-172.
L. J. Broadbelt, A. Chu, M. T. Klein, Polym. Degrad. Stab. 1994, 45, 57-70.
P. F. Britt, Pyrolysis and Combustion of Acetonitrile (CH3CN), can be found under https://info.ornl.gov/sites/publications/Files/Pub57226.pdf, 2002..
A. C. Ferrari, S. E. Rodil, J. Robertson, Phys. Rev. B 2003, 67, 155306.
A. Merlen, J. Buijnsters, C. Pardanaud, Coating 2017, 7, 153.
G. R. Dillip, T. V. M. Sreekanth, S. W. Joo, Ceram. Int. 2017, 43, 6437-6445.
J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S. Qiao, Adv. Mater. 2019, 31, 1901261.
Z. Yang, L. Li, H. Yu, M. Liu, Y. Chi, J. Sha, S. Xu, Chemosphere 2021, 271, 1295033.
J. Y. Howe, C. J. Rawn, L. E. Jones, H. Ow, Powder Diffr. 2003, 18, 150-154.
G. D. Gesesse, A. Gomis-Berenguer, M.-F. Barthe, C. O. Ania, J. Photochem. Photobiol. A 2020, 398, 112622.
Z. Wu, H. Gao, S. Yan, Z. Zou, Dalton Trans. 2014, 43, 12013-12017.
R. Wang, X. Wang, X. Li, L. Pei, X. Gu, Z. Zheng, Int. J. Hydrogen Energy 2021, 46, 197-208.
M. A. AL-Jalali, I. F. Aljghami, Y. M. Mahzia, Spectrochim. Acta Part A 2016, 157, 34-40.