... OBSAH -- ÚVOD 5 -- 1 EYE-TRACKING 7 -- 1.1 Charakteristika lidského oka 7 -- 1.2 Pohyby očí - fixace ... ... využití eye-trackingu 24 -- 2.2 Diagnostické využití eye-trackingu 25 -- 3 KOGNITIVNÍ KARTOGRAFIE 39 ... ... 136 -- 6 PRE-PROCESSING DAT 139 -- 6.1 Převod dat ze SMI do OGAMA 139 -- 6.2 Převod dat z GazePoint ... ... 192 -- 7.7 Analýza 3D dat 194 -- 7.8 Statistická analýza eye-tracking dat 200 -- 7.9 Volba metody analýzy ... ... ET dat - 218 -- 8 SHRNUTÍ 225 -- SUMMARY 227 -- REFERENCE 229 ...
1. vydání 247 stran : ilustrace (převážně barevné), mapy, plány ; 25 cm
Příručka, která se zaměřuje na eye-tracking při hodnocení a optimalizaci map, zejména na praktickou stránku výzkumu. Určeno odborné veřejnosti.; Publikace nabízí komplexní pohled na využití sledování pohybu očí při hodnocení a optimalizaci map. Čtenáři se v ní dozvědí teoretické základy, na kterých technologie eye-tracking funguje, seznámí se s různými způsoby měření pohybu očí a rovněž získají základní přehled o oblastech, ve kterých je eye-tracking využíván, samozřejmě s důrazem na kartografii. Značná část knihy je zaměřena prakticky. Nejprve je popsáno doporučené vybavení eye-tracking laboratoře a jsou představeny tři typy eye-trackerů. Následují kapitoly zaměřené na přípravu, design a průběh experimentu, pre-processing, validaci a čištění dat, a konečně na samotné vyhodnocení naměřených pohybů očí. V těchto kapitolách autor vycházel z vlastních zkušeností, jež se snažil prostřednictvím této publikace předat dalším výzkumníkům.
- MeSH
- Electronic Data Processing MeSH
- Geographic Mapping MeSH
- Cognitive Science MeSH
- Eye Movements MeSH
- Eye-Tracking Technology MeSH
- Research MeSH
- Vision, Ocular MeSH
- Publication type
- Handbook MeSH
- Conspectus
- Geodezie. Kartografie
- NML Fields
- věda a výzkum
- neurovědy
Tato eye-trackingová studie byla navržena tak, aby byla schopna zachytit efekt umělecké transformace fotografických předloh do maleb a její vliv na okulomotorické chování divákova pohledu. Unikátní set stimulů sestával z maleb a fotografií, které sloužily autorům obrazů jako obrazový zdroj pro jejich tvorbu. Mezi zdrojovými fotografiemi a malbou byly pomocí statistické analýzy naměřených dat nalezeny signifikantní rozdíly v bazálních očních pohybech (BOP) a celkově prostudované ploše stimulu. U maleb byla rychlost očních pohybů vyšší a celkový pohled diváka byl rozptýlenější. Na modulaci BOP se kromě celkové komplexity malby podílela i míra divákovy umělecké expertízy. Dále byly nalezeny signifikantní rozdíly ve srovnání fixačních map maleb oproti fotografiím. Tyto rozdíly mezi fixačními mapami mohou být interpretovány jako index umělecké transformace fotografie do malby, obsahující i složku umělecké intence. Ve světle teoretického pozadí umělecké intence, která v sobě zahrnuje i motorické akty umělce, je představena možnost použít záznam okulomotorického chování jako ukazatele divákovy inference umělecké intence. Tato možnost je ilustrována na třech případových studiích. Článek je v anglickém jazyce.
This eye-tracking study was designed to analyze the effect of artistic transformation of a photographic image to a painting on oculomotor behavior. The study employed unique set of stimuli, consisting of paintings and photographs used by authors of the paintings as direct source images. First, the differences in basic eye movement measurements and the explored area were investigated. In paintings, viewers moved their eyes quicker, and viewing was more dispersive. Second, relationship between the basic eye movement measurements and stylistic features (complexity, style expressivity and dynamism) as well as the top-down factor of expertise were analyzed. Furthermore, fixation maps of paintings versus photographs were compared and significant shifts were identified. The difference in fixation maps can be interpreted as a behavioral index of artistic transformations, including artist’s intention (AI). In the light of the theoretical background of AI that includes even motor acts, the idea of using oculomotor behavior as an index of viewer’s inference of AI was introduced.
- Keywords
- fixace, fixační mapy, transformace, modelování, styl, hodnocení,
- MeSH
- Photography * MeSH
- Humans MeSH
- Paintings * psychology MeSH
- Eye Movements physiology MeSH
- Eye-Tracking Technology instrumentation statistics & numerical data MeSH
- Art MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Case Reports MeSH
- Observational Study MeSH
Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualisation phase and a neural network-based classification phase. The first phase involves transforming eye-tracking fixation data into 2D visualisations called Fix-images, which clearly depict reading difficulties. The second phase utilises the ResNet18 convolutional neural network for classifying these images. The INSIGHT method was tested on 35 child participants (13 dyslexic and 22 control readers) using three text-reading tasks, achieving a highest accuracy of 86.65%. Additionally, we cross-tested the method on an independent dataset of Danish readers, confirming the robustness and generalizability of our approach with a notable accuracy of 86.11%. This innovative approach not only provides detailed insight into eye movement patterns when reading but also offers a robust framework for the early and accurate diagnosis of dyslexia, supporting the potential for more personalised and effective interventions.
- MeSH
- Reading MeSH
- Child MeSH
- Dyslexia * physiopathology diagnosis classification MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Fixation, Ocular * physiology MeSH
- Eye Movements physiology MeSH
- Eye-Tracking Technology * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section "An empirically based minimal reporting guideline").
- MeSH
- Empirical Research MeSH
- Humans MeSH
- Eye Movements * MeSH
- Eye-Tracking Technology * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
Small fish species, such as zebrafish and medaka, are increasingly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. In this study, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers, and caretakers, in both small and large facilities. Zebrabase is a scalable, cross-platform fish tracking database developed especially for fish research facilities. Nevertheless, this platform can be easily adapted for a wide variety of aquatic model organisms housed in tanks. It provides sophisticated tracking, reporting, and management functions that help keep animal-related records well organized, including a QR code functionality for tank labeling. The implementation of various user roles ensures a functional hierarchy and customized access to specific functions and data. In addition, Zebrabase makes it easy to personalize rooms and racks, and its advanced statistics and reporting options make it an excellent tool for creating periodic reports of animal usage and productivity. Communication between the facility and the researchers can be streamlined by the database functions. Finally, Zebrabase also features an interactive breeding history and a smart interface with advanced visualizations and intuitive color coding that accelerate the processes.
- MeSH
- Electronic Data Processing MeSH
- Animal Husbandry methods organization & administration MeSH
- Zebrafish * MeSH
- Databases, Factual MeSH
- Animals, Laboratory * MeSH
- Environmental Monitoring MeSH
- Software * MeSH
- Aquaculture methods organization & administration MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Záměr využít technický prostředek - elektronickou kartu- v oblasti zdravotnictví, vznikl v různých zemích Evropy s různým cílem a zaměřením. V článku popisujeme význačné evropské projekty, které se problematikou elektronických karet zabývajú
The intention to use a technical tool - electronic cardin health care has arisen in different European countries with different aims and objectives. Important European projects dealing with electronic cards are described in the paper.
- MeSH
- Patient Identification Systems MeSH
- Informatics MeSH
- Humans MeSH
- Pilot Projects MeSH
- Data Collection MeSH
- Records MeSH
- Check Tag
- Humans MeSH
- Geographicals
- Europe MeSH
Intracranial human brain recordings from multiple implanted depth electrodes using stereo-EEG (sEEG) technology for seizure localization provide unique local field potential signals (LFP) sampled with standard macro- and special micro-electrode contacts. Over one hundred macro- and micro-contact LFP signals localized in particular brain regions were recorded from each sEEG monitoring case as patients engaged in an automated battery of verbal memory and non-verbal gaze movement tasks. Subject eye and vocal responses in both visual and auditory task versions were automatically detected in Polish, Czech, and Slovak languages with accurate timing of the correct and incorrect verbal responses using our web-based transcription tool. The behavioral events, LFP and pupillometric signals were synchronized and stored in a standard BIDS data structure with corresponding metadata. Each dataset contains recordings from at least one battery task performed over at least one day. The same set of 180 common nouns in the three languages was used across different battery tasks and recording days to enable the analysis of selective responses to specific word stimuli.
- MeSH
- Electroencephalography MeSH
- Language MeSH
- Cognition * MeSH
- Humans MeSH
- Brain * physiology MeSH
- Eye Movements MeSH
- Eye-Tracking Technology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
Men and women respond differently when presented with sexual stimuli. Men's reaction is gender-specific, and women's reaction is gender-nonspecific. This might be a result of differential cognitive processing of sexual cues, namely copulatory movement (CM), which is present in almost every dynamic erotic stimulus. A novelty eye-tracking procedure was developed to assess the saliency of short film clips containing CM or non-CM sexual activities. Results from 29 gynephilic men and 31 androphilic women showed only small and insignificant effects in attention bias and no effects in attentional capture. Our results suggest that CM is not processed differently in men and women and, therefore, is not the reason behind gender-nonspecific sexual responses in women.
- MeSH
- Heterosexuality * MeSH
- Copulation MeSH
- Humans MeSH
- Attentional Bias * MeSH
- Sexual Behavior MeSH
- Eye-Tracking Technology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Traffic signs are an integral part of the traffic control plan and they provide road users with necessary information on the upcoming situation. This paper aims to examine the level of understanding of traffic sign imagery used in different countries and to track participants' eye movement when they encounter unfamiliar signs. Tobii eye tracking glasses were used to track gaze differences between familiar and unfamiliar traffic signs. Our findings show that sign characteristics (such as the amount of information on the sign) and the observer's knowledge of the sign meaning have a significant impact on eye behaviour. Signs containing more information (loaded with more content) and unfamiliar to the participant systematically produced the longest overall and average fixations and gazing duration. Given that longer gaze time for unfamiliar traffic signs presents a potential traffic hazard, we evaluated the need for standardization of traffic signs.
- MeSH
- Time Factors MeSH
- Adult MeSH
- Humans MeSH
- International Cooperation MeSH
- Fixation, Ocular physiology MeSH
- Location Directories and Signs standards MeSH
- Eye Movements physiology MeSH
- Attention MeSH
- Automobile Driving psychology MeSH
- Recognition, Psychology physiology MeSH
- Photic Stimulation MeSH
- Eye-Tracking Technology MeSH
- Knowledge MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH