-
Je něco špatně v tomto záznamu ?
The Cell Tracking Challenge: 10 years of objective benchmarking
M. Maška, V. Ulman, P. Delgado-Rodriguez, E. Gómez-de-Mariscal, T. Nečasová, FA. Guerrero Peña, TI. Ren, EM. Meyerowitz, T. Scherr, K. Löffler, R. Mikut, T. Guo, Y. Wang, JP. Allebach, R. Bao, NM. Al-Shakarji, G. Rahmon, IE. Toubal, K....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 NS110915
NINDS NIH HHS - United States
Howard Hughes Medical Institute - United States
NLK
ProQuest Central
od 2004-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2004-10-01 do Před 1 rokem
- MeSH
- algoritmy MeSH
- benchmarking * MeSH
- buněčný tracking * metody MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
Bioengineering Department Universidad Carlos 3 de Madrid Madrid Spain
Boston Children's Hospital and Harvard Medical School Boston MA USA
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic
Centre National de la Recherche Scientifique Paris France
Centro de Informatica Universidade Federal de Pernambuco Recife Brazil
Department of Electrical and Computer Engineering Drexel University Philadelphia PA USA
Division of Medical Image Computing German Cancer Research Center Heidelberg Germany
Griffith University Nathan Queensland Australia
Helmholtz Imaging German Cancer Research Center Heidelberg Germany
Institut de Génomique Fonctionnelle de Lyon École Normale Supérieure de Lyon Lyon France
Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain
Interactive Machine Learning Group German Cancer Research Center Heidelberg Germany
Optical Cell Biology Instituto Gulbenkian de Ciência Oeiras Portugal
Raysearch Laboratories AB Stockholm Sweden
School of Electrical and Computer Engineering Ben Gurion University of the Negev Beersheba Israel
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016995
- 003
- CZ-PrNML
- 005
- 20231026105357.0
- 007
- ta
- 008
- 231013s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41592-023-01879-y $2 doi
- 035 __
- $a (PubMed)37202537
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Maška, Martin $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000335446494 $7 mub2013778285
- 245 14
- $a The Cell Tracking Challenge: 10 years of objective benchmarking / $c M. Maška, V. Ulman, P. Delgado-Rodriguez, E. Gómez-de-Mariscal, T. Nečasová, FA. Guerrero Peña, TI. Ren, EM. Meyerowitz, T. Scherr, K. Löffler, R. Mikut, T. Guo, Y. Wang, JP. Allebach, R. Bao, NM. Al-Shakarji, G. Rahmon, IE. Toubal, K. Palaniappan, F. Lux, P. Matula, K. Sugawara, KEG. Magnusson, L. Aho, AR. Cohen, A. Arbelle, T. Ben-Haim, TR. Raviv, F. Isensee, PF. Jäger, KH. Maier-Hein, Y. Zhu, C. Ederra, A. Urbiola, E. Meijering, A. Cunha, A. Muñoz-Barrutia, M. Kozubek, C. Ortiz-de-Solórzano
- 520 9_
- $a The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
- 650 12
- $a benchmarking $7 D019985
- 650 12
- $a buněčný tracking $x metody $7 D058948
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a algoritmy $7 D000465
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ulman, Vladimír $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $u IT4Innovations National Supercomputing Center, VSB - Technical University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/0000000242707982
- 700 1_
- $a Delgado-Rodriguez, Pablo $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $1 https://orcid.org/0000000259917791
- 700 1_
- $a Gómez-de-Mariscal, Estibaliz $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $u Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal $1 https://orcid.org/0000000320823277
- 700 1_
- $a Nečasová, Tereza $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000258962347
- 700 1_
- $a Guerrero Peña, Fidel A $u Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil $u Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000299995321
- 700 1_
- $a Ren, Tsang Ing $u Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil $1 https://orcid.org/0000000236770264
- 700 1_
- $a Meyerowitz, Elliot M $u Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000347985153 $7 xx0195411
- 700 1_
- $a Scherr, Tim $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000187552825
- 700 1_
- $a Löffler, Katharina $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000197693517
- 700 1_
- $a Mikut, Ralf $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000191005496
- 700 1_
- $a Guo, Tianqi $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA $1 https://orcid.org/0000000216905897
- 700 1_
- $a Wang, Yin $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- 700 1_
- $a Allebach, Jan P $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- 700 1_
- $a Bao, Rina $u Boston Children's Hospital and Harvard Medical School, Boston, MA, USA $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- 700 1_
- $a Al-Shakarji, Noor M $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- 700 1_
- $a Rahmon, Gani $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA $1 https://orcid.org/0000000249618229
- 700 1_
- $a Toubal, Imad Eddine $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA $1 https://orcid.org/0000000317540823
- 700 1_
- $a Palaniappan, Kannappan $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- 700 1_
- $a Lux, Filip $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000237078157
- 700 1_
- $a Matula, Petr $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000341251597 $7 xx0140973
- 700 1_
- $a Sugawara, Ko $u Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France $u Centre National de la Recherche Scientifique (CNRS), Paris, France $1 https://orcid.org/0000000213929340
- 700 1_
- $a Magnusson, Klas E G $u Raysearch Laboratories AB, Stockholm, Sweden $1 https://orcid.org/000000025329575X
- 700 1_
- $a Aho, Layton $u Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
- 700 1_
- $a Cohen, Andrew R $u Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
- 700 1_
- $a Arbelle, Assaf $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- 700 1_
- $a Ben-Haim, Tal $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- 700 1_
- $a Raviv, Tammy Riklin $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- 700 1_
- $a Isensee, Fabian $u Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 700 1_
- $a Jäger, Paul F $u Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Interactive Machine Learning Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 700 1_
- $a Maier-Hein, Klaus H $u Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- 700 1_
- $a Zhu, Yanming $u School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia $u Griffith University, Nathan, Queensland, Australia $1 https://orcid.org/0000000282388090
- 700 1_
- $a Ederra, Cristina $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
- 700 1_
- $a Urbiola, Ainhoa $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
- 700 1_
- $a Meijering, Erik $u School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia
- 700 1_
- $a Cunha, Alexandre $u Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000225416024
- 700 1_
- $a Muñoz-Barrutia, Arrate $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $1 https://orcid.org/0000000215731661
- 700 1_
- $a Kozubek, Michal $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic. kozubek@fi.muni.cz $1 https://orcid.org/000000017902589X $7 ola2003204934
- 700 1_
- $a Ortiz-de-Solórzano, Carlos $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain. codesolorzano@unav.es $1 https://orcid.org/0000000187200205
- 773 0_
- $w MED00159605 $t Nature methods $x 1548-7105 $g Roč. 20, č. 7 (2023), s. 1010-1020
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37202537 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105352 $b ABA008
- 999 __
- $a ok $b bmc $g 2000488 $s 1203357
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 20 $c 7 $d 1010-1020 $e 20230518 $i 1548-7105 $m Nature methods $n Nat Methods $x MED00159605
- GRA __
- $a R01 NS110915 $p NINDS NIH HHS $2 United States
- GRA __
- $p Howard Hughes Medical Institute $2 United States
- LZP __
- $a Pubmed-20231013