• Je něco špatně v tomto záznamu ?

The Cell Tracking Challenge: 10 years of objective benchmarking

M. Maška, V. Ulman, P. Delgado-Rodriguez, E. Gómez-de-Mariscal, T. Nečasová, FA. Guerrero Peña, TI. Ren, EM. Meyerowitz, T. Scherr, K. Löffler, R. Mikut, T. Guo, Y. Wang, JP. Allebach, R. Bao, NM. Al-Shakarji, G. Rahmon, IE. Toubal, K....

. 2023 ; 20 (7) : 1010-1020. [pub] 20230518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016995

Grantová podpora
R01 NS110915 NINDS NIH HHS - United States
Howard Hughes Medical Institute - United States

E-zdroje Online Plný text

NLK ProQuest Central od 2004-10-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2004-10-01 do Před 1 rokem

The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.

Bioengineering Department Universidad Carlos 3 de Madrid Madrid Spain

Biomedical Engineering Program and Ciberonc Center for Applied Medical Research Universidad de Navarra Pamplona Spain

Boston Children's Hospital and Harvard Medical School Boston MA USA

Center for Advanced Methods in Biological Image Analysis Beckman Institute California Institute of Technology Pasadena CA USA

Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czech Republic

Centre National de la Recherche Scientifique Paris France

Centro de Informatica Universidade Federal de Pernambuco Recife Brazil

CIVA Lab Department of Electrical Engineering and Computer Science University of Missouri Columbia MO USA

Department of Electrical and Computer Engineering Drexel University Philadelphia PA USA

Division of Biology and Biological Engineering and Howard Hughes Medical Institute California Institute of Technology Pasadena CA USA

Division of Medical Image Computing German Cancer Research Center Heidelberg Germany

Griffith University Nathan Queensland Australia

Helmholtz Imaging German Cancer Research Center Heidelberg Germany

Institut de Génomique Fonctionnelle de Lyon École Normale Supérieure de Lyon Lyon France

Institute for Automation and Applied Informatics Karlsruhe Institute of Technology Eggenstein Leopoldshafen Germany

Instituto de Investigación Sanitaria Gregorio Marañón Madrid Spain

Interactive Machine Learning Group German Cancer Research Center Heidelberg Germany

IT4Innovations National Supercomputing Center VSB Technical University of Ostrava Ostrava Czech Republic

Optical Cell Biology Instituto Gulbenkian de Ciência Oeiras Portugal

Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany

Raysearch Laboratories AB Stockholm Sweden

School of Computer Science and Engineering University of New South Wales Sydney New South Wales Australia

School of Electrical and Computer Engineering Ben Gurion University of the Negev Beersheba Israel

The Elmore Family School of Electrical and Computer Engineering Purdue University West Lafayette IN USA

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016995
003      
CZ-PrNML
005      
20231026105357.0
007      
ta
008      
231013s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41592-023-01879-y $2 doi
035    __
$a (PubMed)37202537
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Maška, Martin $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000335446494 $7 mub2013778285
245    14
$a The Cell Tracking Challenge: 10 years of objective benchmarking / $c M. Maška, V. Ulman, P. Delgado-Rodriguez, E. Gómez-de-Mariscal, T. Nečasová, FA. Guerrero Peña, TI. Ren, EM. Meyerowitz, T. Scherr, K. Löffler, R. Mikut, T. Guo, Y. Wang, JP. Allebach, R. Bao, NM. Al-Shakarji, G. Rahmon, IE. Toubal, K. Palaniappan, F. Lux, P. Matula, K. Sugawara, KEG. Magnusson, L. Aho, AR. Cohen, A. Arbelle, T. Ben-Haim, TR. Raviv, F. Isensee, PF. Jäger, KH. Maier-Hein, Y. Zhu, C. Ederra, A. Urbiola, E. Meijering, A. Cunha, A. Muñoz-Barrutia, M. Kozubek, C. Ortiz-de-Solórzano
520    9_
$a The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
650    12
$a benchmarking $7 D019985
650    12
$a buněčný tracking $x metody $7 D058948
650    _2
$a strojové učení $7 D000069550
650    _2
$a algoritmy $7 D000465
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ulman, Vladimír $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $u IT4Innovations National Supercomputing Center, VSB - Technical University of Ostrava, Ostrava, Czech Republic $1 https://orcid.org/0000000242707982
700    1_
$a Delgado-Rodriguez, Pablo $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $1 https://orcid.org/0000000259917791
700    1_
$a Gómez-de-Mariscal, Estibaliz $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $u Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal $1 https://orcid.org/0000000320823277
700    1_
$a Nečasová, Tereza $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000258962347
700    1_
$a Guerrero Peña, Fidel A $u Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil $u Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000299995321
700    1_
$a Ren, Tsang Ing $u Centro de Informatica, Universidade Federal de Pernambuco, Recife, Brazil $1 https://orcid.org/0000000236770264
700    1_
$a Meyerowitz, Elliot M $u Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000347985153 $7 xx0195411
700    1_
$a Scherr, Tim $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000187552825
700    1_
$a Löffler, Katharina $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000197693517
700    1_
$a Mikut, Ralf $u Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany $1 https://orcid.org/0000000191005496
700    1_
$a Guo, Tianqi $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA $1 https://orcid.org/0000000216905897
700    1_
$a Wang, Yin $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
700    1_
$a Allebach, Jan P $u The Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
700    1_
$a Bao, Rina $u Boston Children's Hospital and Harvard Medical School, Boston, MA, USA $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
700    1_
$a Al-Shakarji, Noor M $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
700    1_
$a Rahmon, Gani $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA $1 https://orcid.org/0000000249618229
700    1_
$a Toubal, Imad Eddine $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA $1 https://orcid.org/0000000317540823
700    1_
$a Palaniappan, Kannappan $u CIVA Lab, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
700    1_
$a Lux, Filip $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000237078157
700    1_
$a Matula, Petr $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000341251597 $7 xx0140973
700    1_
$a Sugawara, Ko $u Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France $u Centre National de la Recherche Scientifique (CNRS), Paris, France $1 https://orcid.org/0000000213929340
700    1_
$a Magnusson, Klas E G $u Raysearch Laboratories AB, Stockholm, Sweden $1 https://orcid.org/000000025329575X
700    1_
$a Aho, Layton $u Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
700    1_
$a Cohen, Andrew R $u Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
700    1_
$a Arbelle, Assaf $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
700    1_
$a Ben-Haim, Tal $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
700    1_
$a Raviv, Tammy Riklin $u School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
700    1_
$a Isensee, Fabian $u Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
700    1_
$a Jäger, Paul F $u Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Interactive Machine Learning Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
700    1_
$a Maier-Hein, Klaus H $u Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany $u Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
700    1_
$a Zhu, Yanming $u School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia $u Griffith University, Nathan, Queensland, Australia $1 https://orcid.org/0000000282388090
700    1_
$a Ederra, Cristina $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
700    1_
$a Urbiola, Ainhoa $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
700    1_
$a Meijering, Erik $u School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia
700    1_
$a Cunha, Alexandre $u Center for Advanced Methods in Biological Image Analysis, Beckman Institute, California Institute of Technology, Pasadena, CA, USA $1 https://orcid.org/0000000225416024
700    1_
$a Muñoz-Barrutia, Arrate $u Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain $u Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain $1 https://orcid.org/0000000215731661
700    1_
$a Kozubek, Michal $u Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic. kozubek@fi.muni.cz $1 https://orcid.org/000000017902589X $7 ola2003204934
700    1_
$a Ortiz-de-Solórzano, Carlos $u Biomedical Engineering Program and Ciberonc, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain. codesolorzano@unav.es $1 https://orcid.org/0000000187200205
773    0_
$w MED00159605 $t Nature methods $x 1548-7105 $g Roč. 20, č. 7 (2023), s. 1010-1020
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37202537 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105352 $b ABA008
999    __
$a ok $b bmc $g 2000488 $s 1203357
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 20 $c 7 $d 1010-1020 $e 20230518 $i 1548-7105 $m Nature methods $n Nat Methods $x MED00159605
GRA    __
$a R01 NS110915 $p NINDS NIH HHS $2 United States
GRA    __
$p Howard Hughes Medical Institute $2 United States
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...