-
Autor
Aho, Layton 1 Al-Shakarji, Noor M 1 Allebach, Jan P 1 Arbelle, Assaf 1 Bao, Rina 1 Ben-Haim, Tal 1 Cohen, Andrew R 1 Cunha, Alexandre 1 Delgado-Rodriguez, Pablo 1 Ederra, Cristina 1 Guerrero Peña, Fidel A 1 Guo, Tianqi 1 Gómez-de-Mariscal, Estibaliz 1 Isensee, Fabian 1 Jäger, Paul F 1 Kozubek, Michal 1 Lux, Filip 1 Löffler, Katharina 1 Magnusson, Klas E G 1 Maier-Hein, Klaus H 1
-
Pracoviště
Bioengineering Department Universidad Carlos... 1 Biomedical Engineering Program and Ciberonc ... 1 Boston Children's Hospital and Harvard Medic... 1 CIVA Lab Department of Electrical Engineerin... 1 Center for Advanced Methods in Biological Im... 1 Centre National de la Recherche Scientifique... 1 Centre for Biomedical Image Analysis Faculty... 1 Centro de Informatica Universidade Federal d... 1 Department of Electrical and Computer Engine... 1 Division of Biology and Biological Engineeri... 1 Division of Medical Image Computing German C... 1 Griffith University Nathan Queensland Australia 1 Helmholtz Imaging German Cancer Research Cen... 1 IT4Innovations National Supercomputing Cente... 1 Institut de Génomique Fonctionnelle de Lyon ... 1 Institute for Automation and Applied Informa... 1 Instituto de Investigación Sanitaria Gregori... 1 Interactive Machine Learning Group German Ca... 1 Optical Cell Biology Instituto Gulbenkian de... 1 Pattern Analysis and Learning Group Departme... 1
- Formát
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Dostupnost
- Vlastník
NLK
ProQuest Central
od 2004-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2004-10-01 do Před 1 rokem
PubMed
37202537
DOI
10.1038/s41592-023-01879-y
Knihovny.cz E-zdroje
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.