• Something wrong with this record ?

INSIGHT: Combining Fixation Visualisations and Residual Neural Networks for Dyslexia Classification From Eye-Tracking Data

R. Svaricek, N. Dostalova, J. Sedmidubsky, A. Cernek

. 2025 ; 31 (1) : e1801. [pub] -

Language English Country England, Great Britain

Document type Journal Article

Grant support
TL05000177 Technologická Agentura České Republiky

Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualisation phase and a neural network-based classification phase. The first phase involves transforming eye-tracking fixation data into 2D visualisations called Fix-images, which clearly depict reading difficulties. The second phase utilises the ResNet18 convolutional neural network for classifying these images. The INSIGHT method was tested on 35 child participants (13 dyslexic and 22 control readers) using three text-reading tasks, achieving a highest accuracy of 86.65%. Additionally, we cross-tested the method on an independent dataset of Danish readers, confirming the robustness and generalizability of our approach with a notable accuracy of 86.11%. This innovative approach not only provides detailed insight into eye movement patterns when reading but also offers a robust framework for the early and accurate diagnosis of dyslexia, supporting the potential for more personalised and effective interventions.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010020
003      
CZ-PrNML
005      
20250429134837.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/dys.1801 $2 doi
035    __
$a (PubMed)39843401
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Svaricek, Roman $u Department of Educational Sciences, Faculty of Arts, Masaryk University, Brno, Czech Republic
245    10
$a INSIGHT: Combining Fixation Visualisations and Residual Neural Networks for Dyslexia Classification From Eye-Tracking Data / $c R. Svaricek, N. Dostalova, J. Sedmidubsky, A. Cernek
520    9_
$a Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualisation phase and a neural network-based classification phase. The first phase involves transforming eye-tracking fixation data into 2D visualisations called Fix-images, which clearly depict reading difficulties. The second phase utilises the ResNet18 convolutional neural network for classifying these images. The INSIGHT method was tested on 35 child participants (13 dyslexic and 22 control readers) using three text-reading tasks, achieving a highest accuracy of 86.65%. Additionally, we cross-tested the method on an independent dataset of Danish readers, confirming the robustness and generalizability of our approach with a notable accuracy of 86.11%. This innovative approach not only provides detailed insight into eye movement patterns when reading but also offers a robust framework for the early and accurate diagnosis of dyslexia, supporting the potential for more personalised and effective interventions.
650    _2
$a lidé $7 D006801
650    12
$a dyslexie $x patofyziologie $x diagnóza $x klasifikace $7 D004410
650    12
$a technologie sledování pohybu očí $7 D000084542
650    12
$a neuronové sítě $7 D016571
650    _2
$a dítě $7 D002648
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    12
$a oční fixace $x fyziologie $7 D005403
650    _2
$a čtení $7 D011932
650    _2
$a pohyby očí $x fyziologie $7 D005133
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dostalova, Nicol $u Department of Educational Sciences, Faculty of Arts, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000234721514
700    1_
$a Sedmidubsky, Jan $u Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000276688521
700    1_
$a Cernek, Andrej $u Department of Machine Learning and Data Processing, Faculty of Informatics, Masaryk University, Brno, Czech Republic
773    0_
$w MED00004901 $t Dyslexia $x 1099-0909 $g Roč. 31, č. 1 (2025), s. e1801
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39843401 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134833 $b ABA008
999    __
$a ok $b bmc $g 2311408 $s 1247101
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 31 $c 1 $d e1801 $e - $i 1099-0909 $m Dyslexia $n Dyslexia $x MED00004901
GRA    __
$a TL05000177 $p Technologická Agentura České Republiky
LZP    __
$a Pubmed-20250415

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...