Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

. 2021 Sep ; 90 (9) : 2147-2160. [epub] 20201204

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33205462

The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.

Area of Toxicology Department of Health Sciences University of Murcia Murcia Spain

BECO do Departamento de Zoologia Universidade de São Paulo São Paulo Brazil

Behavioural Ecology Department of Biology Ludwig Maximilians University of Munich Planegg Martinsried Germany

Behavioural Ecology Group Biological Sciences Anglia Ruskin University Cambridge UK

Behavioural Ecology Group Department of Animal Sciences Wageningen University and Research Wageningen The Netherlands

Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary

Biodiversity and Conservation Lab Department of Biology METU Ankara Turkey

Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Paterna Spain

CEFE University of Montpellier CNRS EPHE IRD University of Paul Valéry Montpellier 3 Montpellier France

Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway

Centre for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway

Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary

Centre for Ecology and Conservation University of Exeter Penryn Cornwall UK

Centre for Research in Animal Behaviour University of Exeter Exeter UK

Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany

Centre of New Technologies University of Warsaw Warsaw Poland

CNRS Department of Biometry and Evolutionary Biology University Lyon 1 University of Lyon Villeurbanne France

Cognitive and Cultural Ecology Research Group Max Planck Institute of Animal Behavior Radolfzell Germany

Département des Sciences Biologiques Université du Québec A Montréal Montréal Canada

Department Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany

Department de Ecología Evolutiva Museo Nacional de Ciencias Naturales Madrid Spain

Department of Animal and Plant Sciences University of Sheffield Sheffield UK

Department of Animal Behaviour Bielefeld University Bielefeld Germany

Department of Animal Ecology Netherlands Institute of Ecology Wageningen The Netherlands

Department of Biodiversity Conservation and Ecosystem Restoration Pyrenean Institute of Ecology Jaca Spain

Department of Biological Sciences University of Bergen Bergen Norway

Department of Biology Lund University Lund Sweden

Department of Biology University of Antwerp Antwerp Belgium

Department of Biology University of Konstanz Konstanz Germany

Department of Biology University of Turku Turku Finland

Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany

Department of Ecology and Genetics and Animal Ecology Uppsala University Uppsala Sweden

Department of Ethology and Biodiversity Conservation Estación Biológica de Doñana CSIC Seville Spain

Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research Berlin Germany

Department of integrative Biology and Biodiversity Research University of Natural Resources and Life Sciences Vienna Vienna Austria

Department of Life Sciences Imperial College London Ascot UK

Department of Life Sciences MARE Marine and Environmental Sciences Centre University of Coimbra Coimbra Portugal

Department of Nature Conservation Environmental Board Estonia

Department of Vertebrate Zoology Faculty of Biology Lomonosov Moscow State Univ Moscow Russia

Department of Wetland Ecology Estación Biológica de Doñana Sevilla Spain

Department of Zoology and Physical Anthropology University of Murcia Murcia Spain

Department of Zoology Faculty of Science Palacký University Olomouc Czech Republic

Department of Zoology Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Department of Zoology University of Otago Dunedin New Zealand

Department STEBICEF Università degli Studi di Palermo Palermo Italy

Division of Biological Sciences University of Montana Missoula USA

Ecological Genetics Research Unit Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

Ecology and Genetics Research Unit University of Oulu Oulu Finland

Edward Grey Institute Department of Zoology University of Oxford Oxford UK

Environmental Engineering Department Hacettepe University Ankara Turkey

Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences University of New South Wales Sydney Australia

Evolutionary and Behavioural Ecology Research Unit Museu de Ciències Naturals de Barcelona Barcelona Spain

Evolutionary Physiology Group Max Planck Institute for Ornithology Seewiesen Germany

Graduate School of Environment Science Hokkaido University Sapporo Japan

Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen

Institute of Avian Research Wilhelmshaven Germany

Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Glasgow UK

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences Petrozavodsk Russia

Institute of Environmental Sciences Jagiellonian University Kraków

Institute of Environmental Sciences Jagiellonian University Krakow Poland

Institute of Ornithology Croatian Academy of Sciences and Arts Zagreb Croatia

Kevo Subarctic Research Institute University of Turku Turku Finland

Laboratory of Ornithology Cornell University Ithaca NY USA

Lancaster Environment Centre Lancaster University Lancaster UK

MTA PE Evolutionary Ecology Research Group University of Pannonia Veszprém Hungary

Museum and Institute of Zoology Polish Academy of Sciences Warsaw Poland

Norwegian Institute for Nature Research FRAM High North Research Centre for Climate and the Environment Tromsø Norway

Ornithological Station Museum and Institute of Zoology Polish Academy of Sciences Gdańsk Poland

RSPB Centre for Conservation Science The Lodge Sandy UK

School of Biological Earth and Environmental Sciences University College Cork Cork Ireland

Station d'Ecologie Théorique et Expérimentale du CNRS Moulis France

Stazione Ornitologica Monreale Italy

Universitat Politècnica de València Valencia Spain

Université de Strasbourg CNRS IPHC UMR 7178 Strasbourg France

Yamashina Institute for Ornithology Abiko Japan

Zvenigorod Biological Station Faculty of Biology Lomonosov Moscow State University Moscow Russia

Zobrazit více v PubMed

Agrawal, A. F. , & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation? Proceedings of the Royal Society B: Biological Sciences, 276(1659), 1183–1191. 10.1098/rspb.2008.1671 PubMed DOI PMC

Ahola, M. P. , Laaksonen, T. , Eeva, T. , & Lehikoinen, E. (2007). Climate change can alter competitive relationships between resident and migratory birds. Journal of Animal Ecology, 76(6), 1045–1052. 10.1111/j.1365-2656.2007.01294.x PubMed DOI

Andersson, M. N. , Wang, H.‐L. , Nord, A. , Salmón, P. , & Isaksson, C. (2015). Composition of physiologically important fatty acids in great tits differs between urban and rural populations on a seasonal basis. Frontiers in Ecology and Evolution, 3, 93. 10.3389/fevo.2015.00093 DOI

Bay, R. A. , Harrigan, R. J. , Underwood, V. L. , Gibbs, H. L. , Smith, T. B. , & Ruegg, K. (2018). Genomic signals of selection predict climate‐driven population declines in a migratory bird. Science, 359, 83–86. 10.1126/science.aan4380 PubMed DOI

Bonnet, T. , Morrissey, M. B. , Morris, A. , Morris, S. , Clutton‐Brock, T. H. , Pemberton, J. M. , & Kruuk, L. E. (2019). The role of selection and evolution in changing parturition date in a red deer population. PLoS Biology, 17, e3000493. PubMed PMC

Both, C. , Artemyev, A. V. , Blaauw, B. , Cowie, R. J. , Dekhuijzen, A. J. , Eeva, T. , Enemar, A. , Gustafsson, L. , Ivankina, E. V. , Järvinen, A. , Metcalfe, N. B. , Nyholm, N. E. I. , Potti, J. , Ravussin, P.‐A. , Sanz, J. J. , Silverin, B. , Slater, F. M. , Sokolov, L. V. , Török, J. , … Visser, M. E. (2004). Large–scale geographical variation confirms that climate change causes birds to lay earlier. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1549), 1657–1662. 10.1098/rspb.2004.2770 PubMed DOI PMC

Blois, J. L. , Williams, J. W. , Fitzpatrick, M. C. , Jackson, S. T. , & Ferrier, S. (2013). Space can substitute for time in predicting climate‐change effects on biodiversity. PNAS, 110(23), 9374–9379. 10.1073/pnas.1220228110 PubMed DOI PMC

Broggi, J. , Hohtola, E. , Orell, M. , & Nilsson, J.‐Å. (2005). Local adaptation to winter conditions in a passerine spreading north: A common‐garden approach. Evolution, 59, 1600–1603. 10.1111/j.0014-3820.2005.tb01810.x PubMed DOI

Charmantier, A. , Demeyrier, V. , Lambrechts, M. , Perret, S. , & Grégoire, A. (2017). Urbanization is associated with divergence in pace‐of‐life in great tits. Frontiers in Ecology and Evolution, 5, 53.

Clutton‐Brock, T. , & Sheldon, B. C. (2010). Individuals and populations: The role of long‐term, individual‐based studies of animals in ecology and evolutionary biology. Trends in Ecology & Evolution, 25(10), 562–573. 10.1016/j.tree.2010.08.002 PubMed DOI

Corsini, M. , Dubiec, A. , Marrot, P. , & Szulkin, M. (2017). Humans and tits in the city: Quantifying the effects of human presence on great tit and blue tit reproductive trait variation. Frontiers in Ecology and Evolution, 5, 82.

Culina, A. , Crowther, T. W. , Ramakers, J. J. C. , Gienapp, P. , & Visser, M. E. (2018). How to do meta‐analysis of open datasets: Comment. Nature Ecology and Evolution, 2, 1053–1056. PubMed

Culina, A. , Baglioni, M. , Crowther, T. W. , Visser, M. E. , Woutersen‐Windhouwer, S. , & Manghi, P. (2018). Navigating the unfolding open data landscape in ecology and evolution. Nature Ecology & Evolution, 2(3), 420–426. PubMed

Culina, A. , Bailey, L. D. , Vriend, S. J. G. , & Visser, M. E. (2019). Standard protocol for the collection of individual level data. Retrieved from https://github.com/SPI_Birds/documentation/blob/master/standard_protocol/SPI_Birds_ProtoPro_v1.0.0.pdf

Culina, A. , Zajkova, Z. , Vriend, S. , Nater, C. , & Bailey, L. (2020). Data from: Connecting the data landscape of long‐term ecological studies: The SPI‐Birds data hub. Dryad Digital Repository, 10.5061/dryad.51c59zw6r PubMed DOI PMC

Delahaie, B. , Charmantier, A. , Chantepie, S. , Garant, D. , Porlier, M. , & Teplitsky, C. (2017). Conserved G‐matrices of morphological and life‐history traits among continental and island blue tit populations. Heredity, 119(2), 76–87. PubMed PMC

Dhondt, A. A. (2007). Ecology and behavior of chickadees and titmice: An integrated approach. In Otter K. A. (Ed.), What drives differences between North American and Eurasian tit studies (pp. 299–310). Oxford University Press.

Dingemanse, N. J. , Bouwman, K. M. , Van De Pol, M. , van Overveld, T. , Patrick, S. C. , Matthysen, E. , & Quinn, J. L. (2012). Variation in personality and behavioural plasticity across four populations of the great tit Parus major . Journal of Animal Ecology, 81, 116–126. PubMed

du Feu, C. R. , Clark, J. A. , Schaub, M. , Fiedler, W. , & Baillie, S. R. (2016). The EURING Data Bank – A critical tool for continental‐scale studies of marked birds. Ringing & Migration, 31, 1–18.

Eeva, T. , Ruuskanen, S. , Salminen, J. P. , Belskii, E. , Järvinen, A. , Kerimov, A. , Korpimäki, E. , Krams, I. , Moreno, J. , Morosinotto, C. , & Mänd, R. (2011). Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca). Oecologia, 165, 277–287. PubMed PMC

Espín, S. , García‐Fernández, A. J. , Herzke, D. , Shore, R. F. , van Hattum, B. , Martínez‐López, E. , Coeurdassier, M. , Eulaers, I. , Fritsch, C. , Gómez‐Ramírez, P. , & Jaspers, V. L. (2016). Tracking pan‐continental trends in environmental contamination using sentinel raptors‐what types of samples should we use? Ecotoxicology, 25(4), 777–801. PubMed PMC

Evans, S. R. (2016). Gauging the purported costs of public data archiving for long‐term population studies. PLoS Biology, 14(4), e1002432. 10.1371/journal.pbio.1002432 PubMed DOI PMC

Festa‐Bianchet, M. , Cote, S. , Hamel, S. , & Pelletier, F. (2019). Long‐term studies of bighorn sheep and mountain goats reveal fitness costs of reproduction. J Animal Ecology, 88, 1118–1133. 10.1111/1365-2656.13002 PubMed DOI

Fiedler, W. , & Davidson, S. (2012). Movebank: Eine offene Internetplattform für Tierwanderungsdaten [Movebank: An open internet platform for animal movement data]. Vogelwarte, 50(1), 15–20.

Grant, P. R. , & Grant, B. R. (2002). Unpredictable evolution in a 30‐year study of Darwin’s finches. Science, 296, 707–717. 10.1126/science.1070315 PubMed DOI

de Jong, M. , van den Eertwegh, L. , Beskers, R. E. , de Vries, P. P. , Spoelstra, K. , & Visser, M. E. (2018). Timing of avian breeding in an urbanized world. Ardea, 106, 31–38.

Johnston, S. E. , Bérénos, C. , Slate, J. , & Pemberton, J. M. (2016). Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovis aries). Genetics, 203, 583–598. PubMed PMC

Keogan, K. , Daunt, F. , Wanless, S. , Phillips, R. A. , Walling, C. A. , Agnew, P. , Ainley, D. G. , Anker‐Nilssen, T. , Ballard, G. , Barrett, R. T. , Barton, K. J. , Bech, C. , Becker, P. , Berglund, P.‐A. , Bollache, L. , Bond, A. L. , Bouwhuis, S. , Bradley, R. W. , Burr, Z. M. , … Lewis, S. (2018). Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change, 8, 313–318. 10.1038/s41558-018-0115-z DOI

Kluijver, H. N. (1951). The population ecology of the great tit, Parus m. major L. Ardea, 39(1–3), 1–135.

Korsten, P. , Mueller, J. C. , Hermannstädter, C. , Bouwman, K. M. , Dingemanse, N. J. , Drent, P. J. , Liedvogel, M. , Matthysen, E. , Van OERS, K. , Van OVERVELD, T. , Patrick, S. C. , Quinn, J. L. , Sheldon, B. C. , Tinbergen, J. M. , & Kempenaers, B. (2010). Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Molecular Ecology, 19, 832–843. 10.1111/j.1365-294X.2009.04518.x PubMed DOI

Kranstauber, B. , Cameron, A. , Weinzerl, R. , Fountain, T. , Tilak, S. , Wikelski, M. , & Kays, R. (2011). The Movebank data model for animal tracking. Environmental Modelling & Software, 26(6), 834–835. 10.1016/j.envsoft.2010.12.005 DOI

Jones, M. B. , O'Brien, M. , Mecum, B. , Boettiger, C. , Schildhauer, M. , Maier, M. , Whiteaker, T. , Earl, S. , & Chong, S. (2019). Ecological metadata language version 2.2.0. KNB Data Repository, 10.5063/F11834T2 DOI

Lack, D. (1954). The natural regulation of animal numbers. Clarendon Press.

Lack, D. (1966). Population studies of birds. Oxford University Press.

Laine, V. N. , Gossmann, T. I. , Schachtschneider, K. M. , Garroway, C. J. , Madsen, O. , Verhoeven, K. J. , De Jager, V. , Megens, H. J. , Warren, W. C. , Minx, P. , & Crooijmans, R. P. (2016). Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications, 7, 10474. PubMed PMC

Lambrechts, M. M. , Adriaensen, F. , Ardia, D. R. , Artemyev, A. V. , Atiénzar, F. , Bańbura, J. , Barba, E. , Bouvier, J.‐C. , camprodon, J. , Cooper, C. B. , Dawson, R. D. , Eens, M. , Eeva, T. , Faivre, B. , Garamszegi, L. Z. , Goodenough, A. E. , Gosler, A. G. , Grégoire, A. , Griffith, S. C. , … Ziane, N. (2010). The design of artificial nestboxes for the study of secondary hole‐nesting birds: A review of methodological inconsistencies and potential biases. Acta Ornithologica, 45, 1–26. 10.3161/000164510X516047 DOI

Loukola, O. J. , Adamik, P. , Adriaensen, F. , Barba, E. , Doligez, B. , Flensted‐Jensen, E. , Eeva, T. , Kivelä, S. M. , Laaksonen, T. , Morosinotto, C. , Mänd, R. , Niemelä, P. T. , Remeš, V. , Samplonius, J. M. , Sebastiano, M. , Senar, J. C. , Slagsvold, T. , Sorace, A. , Tschirren, B. , … Forsman, J. T. (2020). The roles of temperature, nest predators and information parasites for geographical variation in egg covering behaviour of tits (Paridae). Journal of Biogeography. 10.1111/jbi.13830 DOI

Martínez‐Padilla, J. , Estrada, A. , Early, R. , & García‐González, F. (2017). Evolvability meets biogeography: Evolutionary potential decreases at high and low environmental favourability. Proceedings of the Royal Society B: Biological Sciences, 284(1856), 20170516. PubMed PMC

McGlothlin, J. W. , Kobiela, M. E. , Wright, H. V. , Mahler, D. L. , Kolbe, J. J. , Losos, J. B. , & Brodie III, E. D. (2018). Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards. Evolution Letters, 2(4), 310–322. PubMed PMC

Mennerat, A. , Charmantier, A. , Perret, P. , Hurtrez‐Boussès, S. , & Lambrechts, M. M. (2019). Parasite intensity is driven by temperature in a wild bird. Retrieved from https://www.biorxiv.org/content/10.1101/323311v1 DOI

Mills, J. A. , Teplitsky, C. , Arroyo, B. , Charmantier, A. , Becker, P. H. , Birkhead, T. R. , Bize, P. , Blumstein, D. T. , Bonenfant, C. , Boutin, S. , Bushuev, A. , Cam, E. , Cockburn, A. , Côté, S. D. , Coulson, J. C. , Daunt, F. , Dingemanse, N. J. , Doligez, B. , Drummond, H. , … Zedrosser, A. (2015). Archiving primary data: Solutions for long‐term studies. Trends in Ecology & Evolution, 30(10), 581–589. 10.1016/j.tree.2015.07.006 PubMed DOI

Møller, A. P. , Adriaensen, F. , Artemyev, A. , Bańbura, J. , Barba, E. , Biard, C. , Blondel, J. , Bouslama, Z. , Bouvier, J.‐C. , Camprodon, J. , Cecere, F. , Chaine, A. , Charmantier, A. , Charter, M. , Cichoń, M. , Cusimano, C. , Czeszczewik, D. , Doligez, B. , Doutrelant, C. , … Lambrechts, M. M. (2014). Clutch‐size variation in Western Palaearctic secondary hole‐nesting passerine birds in relation to nest box design. Methods in Ecology and Evolution, 5, 353–362. 10.1111/2041-210X.12160 DOI

Nelson, B. (2009). Empty archives. Nature, 461, 160–163. PubMed

Paniw, M. , Maag, N. , Cozzi, G. , Clutton‐Brock, T. , & Ozgul, A. (2019). Life history responses of meerkats to seasonal changes in extreme environments. Science, 363, 631–635. 10.1126/science.aau5905 PubMed DOI

Phillimore, A. B. , Hadfield, J. D. , Jones, O. R. , & Smithers, R. J. (2010). Differences in spawning date between populations of common frog reveal local adaptation. PNAS, 107(18), 8292–8297. 10.1073/pnas.0913792107 PubMed DOI PMC

Poisot, T. , Bruneau, A. , Gonzalez, A. , Gravel, D. , & Peres‐Neto, P. (2019). Ecological data should not be so hard to find and reuse. Trends in Ecology & Evolution, 34(6), 494–496. 10.1016/j.tree.2019.04.005 PubMed DOI

Radchuk, V. , Reed, T. , Teplitsky, C. , Van De Pol, M. , Charmantier, A. , Hassall, C. , Adamík, P. , Adriaensen, F. , Ahola, M. P. , Arcese, P. , & Avilés, J. M. (2019). Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 10(1), 1–14. PubMed PMC

Réale, D. , McAdam, A. , Boutin, S. , & Berteaux, D. (2003). Genetic and plastic responses of a northern mammal to climate change. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1515), 591–596. 10.1098/rspb.2002.2224 PubMed DOI PMC

Roche, D. G. , Lanfear, R. , Binning, S. A. , Haff, T. M. , Schwanz, L. E. , Cain, K. E. , Kokko, H. , Jennions, M. D. , & Kruuk, L. E. B. (2014). Troubleshooting public data archiving: Suggestions to increase participation. PLoS Biology, 12(1), e1001779. 10.1371/journal.pbio.1001779 PubMed DOI PMC

Sæther, B.‐E. , Engen, S. , Grøtan, V. , Fiedler, W. , Matthysen, E. , Visser, M. E. , Wright, J. , Møller, A. P. , Adriaensen, F. , Van balen, H. , Balmer, D. , Mainwaring, M. C. , Mccleery, R. H. , Pampus, M. , & Winkel, W. (2007). The extended moran effect and large‐scale synchronous fluctuations in the size of great tit and blue tit populations. Journal of Animal Ecology, 76, 315–325. 10.1111/j.1365-2656.2006.01195.x PubMed DOI

Salguero‐Gómez, R. , Jones, O. R. , Archer, C. R. , Bein, C. , de Buhr, H. , Farack, C. , Gottschalk, F. , Hartmann, A. , Henning, A. , Hoppe, G. , Römer, G. , Ruoff, T. , Sommer, V. , Wille, J. , Voigt, J. , Zeh, S. , Vieregg, D. , Buckley, Y. M. , Che‐Castaldo, J. , … Vaupel, J. W. (2016). COMADRE: A global data base of animal demography. Journal of Animal Ecology, 85, 371–384. 10.1111/1365-2656.12482 PubMed DOI PMC

Samplonius, J. M. , Bartošová, L. , Burgess, M. D. , Bushuev, A. V. , Eeva, T. , Ivankina, E. V. , Kerimov, A. B. , Krams, I. , Laaksonen, T. , Mägi, M. , Mänd, R. , Potti, J. , Török, J. , Trnka, M. , Visser, M. E. , Zang, H. , & Both, C. (2018). Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Global Change Biology, 24, 3780–3790. 10.1111/gcb.14160 PubMed DOI

Santangelo, J. S. , Miles, L. S. , Breitbart, S. T. , Murray‐Stoker, D. , Rivkin, L. R. , Johnson, M. T. J. , & Ness, R. W. (2020). Urban evolutionary biology. In Szulkin M., Munshi‐South J., & Charmantier A. (Eds.), Urban environments as a framework to study parallel evolution (pp. 36–53). Oxford University Press.

Schneider, F. D. , Fichtmueller, D. , Gossner, M. M. , Güntsch, A. , Jochum, M. , König‐Ries, B. , Le Provost, G. , Manning, P. , Ostrowski, A. , Penone, C. , & Simons, N. K. (2019). Towards an ecological trait‐data standard. Methods in Ecology and Evolution, 10, 2006–2019. 10.1111/2041-210X.13288 DOI

Schroeder, J. , Rees, M. , Nakagawa, S. , & Burke, T. (2015). Reduced fitness in progeny from old parents in a wild population. Proceedings of the National Academy of Sciences of the United States of America, 112, 4021–4025. PubMed PMC

Senar, J. C. , Garamszegi, L. Z. , Tilgar, V. , Biard, C. , Moreno‐Rueda, G. , Salmón, P. , Rivas, J. M. , Sprau, P. , Dingemanse, N. J. , Charmantier, A. , & Demeyrier, V. (2017). Urban great tits (Parus major) show higher distress calling and pecking rates than rural birds across Europe. Frontiers in Ecology and Evolution, 5, 163.

Seress, G. , Hammer, T. , Bókony, V. , Vincze, E. , Preiszner, B. , Pipoly, I. , Sinkovics, C. , Evans, K. L. , & Liker, A. (2018). Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecological Applications, 28, 1143–1156. 10.1002/eap.1730 PubMed DOI

Siepielski, A. M. , Morrissey, M. B. , Buoro, M. , Carlson, S. M. , Caruso, C. M. , Clegg, S. M. , Coulson, T. , DiBattista, J. , Gotanda, K. M. , Francis, C. D. , Hereford, J. , Kingsolver, J. G. , Augustine, K. E. , Kruuk, L. E. B. , Martin, R. A. , Sheldon, B. C. , Sletvold, N. , Svensson, E. I. , Wade, M. J. , & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. 10.1126/science.aag2773 PubMed DOI

Siepielski, A. M. , Morrissey, M. B. , Carlson, S. M. , Francis, C. D. , Kingsolver, J. G. , Whitney, K. D. , & Kruuk, L. E. B. (2019). No evidence that warmer temperatures are associated with selection for smaller body sizes. Proceedings of the Royal Society B: Biological Sciences, 286(1907), 20191332. 10.1098/rspb.2019.1332 PubMed DOI PMC

Spurgin, L. G. , Bosse, M. , Adriaensen, F. , Albayrak, T. , Barboutis, C. , Belda, E. , Bushuev, A. , Cecere, J. G. , Charmantier, A. , Cichon, M. , & Dingemanse, N. J. (2019). The great tit HapMap project: A continental‐scale analysis of genomic variation in a songbird. Retrieved from https://www.biorxiv.org/content/10.1101/561399v1 PubMed DOI

Steppan, S. J. , Phillips, P. C. , & Houle, D. (2002). Comparative quantitative genetics: Evolution of the G‐matrix. Trends in Ecology & Evolution, 17(7), 320–327. 10.1016/S0169-5347(02)02505-3 DOI

Szulkin, M. , Munshi‐South, J. , & Charmantier, A. I. (2020a). Introduction. In Szulkin M., Munshi‐South J., & Charmantier A. (Eds.), Urban evolutionary biology (pp. 1–12). Oxford University Press.

Szulkin, M. , Munshi‐South, J. , & Charmantier, A. (2020b). How to quantify urbanisation when testing for urban evolution? In Szulkin M., Munshi‐South J., & Charmantier A. (Eds.), Urban evolutionary biology (pp. 13–33). Oxford University Press.

Teplitsky, C. , Tarka, M. , Møller, A. P. , Nakagawa, S. , Balbontin, J. , Burke, T. A. , Doutrelant, C. , Gregoire, A. , Hansson, B. , Hasselquist, D. , & Gustafsson, L. (2014). Assessing multivariate constraints to evolution across 10 long‐term avian studies. PLoS ONE, 9(3), e90444. PubMed PMC

Tylianakis, J. M. , Didham, R. K. , Bascompte, J. , & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–1363. 10.1111/j.1461-0248.2008.01250.x PubMed DOI

Vatka, E. , Kangas, K. , Orell, M. , Lampila, S. , Nikula, A. , & Nivala, V. (2014). Nest site selection of a primary hole‐nesting passerine reveals means to developing sustainable forestry. Journal of Avian Biology, 45(2), 187–196. 10.1111/j.1600-048X.2013.00250.x DOI

Vaugoyeau, M. , Adriaensen, F. , Artemyev, A. , Bańbura, J. , Barba, E. , Biard, C. , Blondel, J. , Bouslama, Z. , Bouvier, J. C. , Camprodon, J. , & Cecere, F. (2016). Interspecific variation in the relationship between clutch size, laying date and intensity of urbanisation in four species of hole‐nesting birds. Ecology & Evolution, 6, 5907–5920. PubMed PMC

Visser, M. E. , van Noordwijk, A. J. , Tinbergen, J. M. , & Lessells, C. M. (1998). Warmer springs lead to mis‐timed reproduction in great tits (Parus major). Proceedings of the Royal Society of London, Series B: Biological Sciences, 265, 1867–1870.

Visser, M. E. , Adriaensen, F. , van Balen, J. H. , Blondel, J. , Dhondt, A. A. , van Dongen, S. , du Feu, C. , Ivankina, E. V. , Kerimov, A. B. , de Laet, J. , Matthysen, E. , McCleery, R. , Orell, M. , & Thomson, D. L. (2003). Variable responses to large‐scale climate change in European Parus populations. Proceedings of the Royal Society of London Series B: Biological Sciences, 270(1513), 367–372. PubMed PMC

Wallis, J. C. , Rolando, E. , & Borgman, C. L. (2013). If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS ONE, 8(7), e67332. 10.1371/journal.pone.0067332 PubMed DOI PMC

Wilkins, M. R. , Karaardıç, H. , Vortman, Y. , Parchman, T. L. , Albrecht, T. , Petrželková, A. , Özkan, L. , Pap, P. L. , Hubbard, J. K. , Hund, A. K. , & Safran, R. J. (2016). Phenotypic differentiation is associated with divergent sexual selection among closely related barn swallow populations. Journal of Evolutionary Biology, 29, 2410–2421. 10.1111/jeb.12965 PubMed DOI

Wilkinson, M. D. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 2, 1–9. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...