The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NE/J012599/1
Natural Environment Research Council
202487
European Research Council - International
339092
European Research Council - International
BB/N011759/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
38747336
DOI
10.1111/1755-0998.13969
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, birds, ecological genetics, genomics/proteomics, molecular evolution, population genetics – empirical,
- MeSH
- genetická variace * MeSH
- haplotypy genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- Passeriformes genetika klasifikace MeSH
- populační genetika metody MeSH
- rekombinace genetická MeSH
- selekce (genetika) MeSH
- zpěvní ptáci * genetika klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.
Animal Breeding and Genomics Wageningen University and Research Wageningen The Netherlands
Behavioural Ecology Faculty of Biology LMU München Planegg Martinsried Germany
Behavioural Ecology Group Department of Life Sciences Anglia Ruskin University Cambridgeshire UK
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
Centre for Ecology and Conservation University of Exeter Penryn UK
Department of Animal Ecology Netherlands Institute of Ecology Wageningen The Netherlands
Department of Biology Edward Grey Institute University of Oxford Oxford UK
Department of Biology University of Padova Padova Italy
Department of Biology University of Turku Turku Finland
Department of Ecology and Genetics University of Oulu Oulu Finland
Department of Ornithology Max Planck Institute for Biological Intelligence Seewiesen Germany
Department of Zoology Faculty of Science Palacký University Olomouc Czech Republic
Department of Zoology University of Tartu Tartu Estonia
Dipartimento di Scienze e Politiche Ambientali Università Degli Studi di Milano Milan Italy
Evolutionary Ecology Group Department of Biology University of Antwerp Antwerp Belgium
Evolutionary Ecology Lab Institute of Ecology and Evolution University of Bern Bern Switzerland
Faculty of Biology Lomonosov Moscow State University Moscow Russia
Faculty of Biology Zvenigorod Biological Station Lomonosov Moscow State University Moscow Russia
Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen the Netherlands
Hellenic Ornithological Society BirdLife Greece Athens Greece
Institute of Environmental Sciences Jagiellonian University Kraków Poland
School of Biodiversity One Health and Veterinary Medicine University of Glasgow Glasgow UK
School of Biological Sciences Norwich Research Park University of East Anglia Norwich UK
School of Biosciences University of Sheffield Sheffield UK
UMR CNRS 5558 LBBE Biométrie et Biologie Évolutive Villeurbanne France
University of Nevada Reno Nevada USA
Yamashina Institute for Ornithology Abiko Japan
Zoology Unit Finnish Museum of Natural History University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model‐based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109
Alonso‐Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., Cao, J., Chae, E., Dezwaan, T. M., Ding, W., Ecker, J. R., Exposito‐Alonso, M., Farlow, A., Fitz, J., Gan, X., Grimm, D. G., Hancock, A. M., Henz, S. R., Holm, S., … 1001 Genomes Consortium. (2016). 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 166(2), 481–491. https://doi.org/10.1016/j.cell.2016.05.063
Baek, J. A., Lan, Y., Liu, H., Maltby, K. M., Mishina, Y., & Jiang, R. (2011). Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Developmental Biology, 350(2), 520–531. https://doi.org/10.1016/j.ydbio.2010.12.028
Booker, T. R., Payseur, B. A., & Tigano, A. (2022). Background selection under evolving recombination rates. Proceedings of the Royal Society B: Biological Sciences, 289, 20220782. https://doi.org/10.1098/rspb.2022.0782
Booker, T. R., Yeaman, S., & Whitlock, M. C. (2020). Variation in recombination rate affects detection of outliers in genome scans under neutrality. Molecular Ecology, 29(22), 4274–4279. https://doi.org/10.1111/mec.15501
Bosse, M., Spurgin, L. G., Laine, V. N., Cole, E. F., Firth, J. A., Gienapp, P., Gosler, A. G., McMahon, K., Poissant, J., Verhagen, I., Groenen, M. A. M., van Oers, K., Sheldon, B. C., Visser, M. E., & Slate, J. (2017). Recent natural selection causes adaptive evolution of an avian polygenic trait. Science, 358(6361), 365–368. https://doi.org/10.1126/science.aal3298
Bovine HapMap Consortium, Gibbs, R. A., Taylor, J. F., Van Tassell, C. P., Barendse, W., Eversole, K. A., Gill, C. A., Green, R. D., Hamernik, D. L., Kappes, S. M., Lien, S., Matukumalli, L. K., McEwan, J. C., Nazareth, L. V., Schnabel, R. D., Weinstock, G. M., Wheeler, D. A., Ajmone‐Marsan, P., Boettcher, P. J., … Dodds, K. G. (2009). Genome‐wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science, 324(5926), 528–532. https://doi.org/10.1126/science.1167936
Bravo, G. A., Schmitt, C. J., & Edwards, S. V. (2021). What have we learned from the first 500 avian genomes? Annual Review of Ecology, Evolution, and Systematics, 52, 611–639. https://doi.org/10.1146/annurev‐ecolsys‐012121‐085928
Burri, R. (2017). Dissecting differentiation landscapes: A linked selection's perspective. Journal of Evolutionary Biology, 30(8), 1501–1505. https://doi.org/10.1111/jeb.13108
Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, L., Suh, A., Dutoit, L., Bureš, S., Garamszegi, L. Z., Hogner, S., Moreno, J., Qvarnström, A., Ružić, M., Sæther, S.‐A., Sætre, G.‐P., Török, J., & Ellegren, H. (2015). Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Research, 25(11), 1656–1665. https://doi.org/10.1101/gr.196485.115
Campagna, L., Gronau, I., Silveira, L. F., Siepel, A., & Lovette, I. J. (2015). Distinguishing noise from signal in patterns of genomic divergence in a highly polymorphic avian radiation. Molecular Ecology, 24(16), 4238–4251. https://doi.org/10.1111/mec.13314
Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B., & Sheldon, B. C. (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science, 320(5877), 800–803. https://doi.org/10.1126/science.1157174
Chase, M. A., Ellegren, H., & Mugal, C. F. (2021). Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution, 75(9), 2179–2196. https://doi.org/10.1111/evo.14234
Chen, J., Glémin, S., & Lascoux, M. (2017). Genetic diversity and the efficacy of purifying selection across plant and animal species. Molecular Biology and Evolution, 34(6), 1417–1428.
Chia, J. M., Song, C., Bradbury, P. J., Costich, D., de Leon, N., Doebley, J., Elshire, R. J., Gaut, B., Geller, L., Glaubitz, J. C., Gore, M., Guill, K. E., Holland, J., Hufford, M. B., Lai, J., Li, M., Liu, X., Lu, Y., McCombie, R., … Ware, D. (2012). Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 44(7), 803–807. https://doi.org/10.1038/ng.2313
Cho, Y. L., Min, J. K., Roh, K. M., Kim, W. K., Han, B. S., Bae, K. H., Lee, S. C., Chung, S. J., & Kang, H. J. (2015). Phosphoprotein phosphatase 1CB (PPP1CB), a novel adipogenic activator, promotes 3T3‐L1 adipogenesis. Biochemical and Biophysical Research Communications, 467(2), 211–217. https://doi.org/10.1016/j.bbrc.2015.10.004
Clements, J. F. (2007). Clements checklist of birds of the world. Comstock Pub. Associates/Cornell University Press.
Comeron, J. M. (2017). Background selection as null hypothesis in population genomics: Insights and challenges from drosophila studies. Philosophical Transactions of the Royal Society, B: Biological Sciences, 372(1736), 20160471. https://doi.org/10.1098/rstb.2016.0471
Coop, G., Witonsky, D., Di Rienzo, A., & Pritchard, J. K. (2010). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185(4), 1411–1423. https://doi.org/10.1534/genetics.110.114819
Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23(13), 3133–3157. https://doi.org/10.1111/mec.12796
Culina, A., Adriaensen, F., Bailey, L. D., Burgess, M. D., Charmantier, A., Cole, E. F., Eeva, T., Matthysen, E., Nater, C. R., Sheldon, B. C., Saether, B.‐E., Vriend, S. J. G., Zajkova, Z., Adamík, P., Aplin, L. M., Angulo, E., Artemyev, A., Barba, E., Barišić, S., … Visser, M. E. (2021). Connecting the data landscape of long‐term ecological studies: The SPI‐birds data hub. The Journal of Animal Ecology, 90(9), 2147–2160. https://doi.org/10.1111/1365‐2656.13388
da Silva, V. H., Laine, V. N., Bosse, M., Spurgin, L. G., Derks, M. F. L., van Oers, K., Dibbits, B., Slate, J., Crooijmans, R. P. M. A., Visser, M. E., & Groenen, M. A. M. (2019). The genomic complexity of a large inversion in great tits. Genome Biology and Evolution, 11(7), 1870–1881. https://doi.org/10.1093/gbe/evz106
Delmore, K. E., Lugo Ramos, J. S., Van Doren, B. M., Lundberg, M., Bensch, S., Irwin, D. E., & Liedvogel, M. (2018). Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evolution Letters, 2(2), 76–87. https://doi.org/10.1002/evl3.46
Dingemanse, N. J., Bouwman, K. M., van de Pol, M., van Overveld, T., Patrick, S. C., Matthysen, E., & Quinn, J. L. (2012). Variation in personality and behavioural plasticity across four populations of the great tit Parus major. The Journal of Animal Ecology, 81(1), 116–126. https://doi.org/10.1111/j.1365‐2656.2011.01877.x
Ellegren, H., & Wolf, J. B. W. (2017). Parallelism in genomic landscapes of differentiation, conserved genomic features and the role of linked selection. Journal of Evolutionary Biology, 30(8), 1516–1518. https://doi.org/10.1111/jeb.13113
Feder, J. L., Egan, S. P., & Nosil, P. (2012). The genomics of speciation‐with‐gene‐flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009
Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30(7), 1687–1699. https://doi.org/10.1093/molbev/mst063
Gautier, M., & Vitalis, R. (2012). Rehh: An R package to detect footprints of selection in genome‐wide SNP data from haplotype structure. Bioinformatics, 28(8), 1176–1177. https://doi.org/10.1093/bioinformatics/bts115
Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity‐based analysis of ecological data. Journal of Statistical Software, 22, 1–19. https://doi.org/10.18637/jss.v022.i07
Gosler, A. (1993). The great tit. Hamlyn.
Gosler, A. (1999). A comment on the validity of the British great tit Parus major newtoni. Bulletin of the British Ornithologists Club, 119, 47–55.
Gunnarsson, U., Kerje, S., Bed'hom, B., Sahlqvist, A. S., Ekwall, O., Tixier‐Boichard, M., Kämpe, O., & Andersson, L. (2011). The dark brown plumage color in chickens is caused by an 8.3‐kb deletion upstream of SOX10. Pigment Cell & Melanoma Research, 24(2), 268–274. https://doi.org/10.1111/j.1755‐148X.2011.00825.x
Harris, H. (1966). Enzyme polymorphisms in man. Proceedings of the Royal Society of London, Series B: Biological Sciences, 164(995), 298–310. https://doi.org/10.1098/rspb.1966.0032
Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sinauer.
Hedrick, P. W. (2005). Genetics of populations (3rd ed.). Jones and Bartlett.
Hejase, H. A., Salman‐Minkov, A., Campagna, L., Hubisz, M. J., Lovette, I. J., Gronau, I., & Siepel, A. (2020). Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps. Proceedings of the National Academy of Sciences of the United States of America, 117(48), 30554–30565. https://doi.org/10.1073/pnas.2015987117
Hewitt, G. M. (1999). Post‐glacial re‐colonization of European biota. Biological Journal of the Linnean Society, 68(1–2), 87–112. https://doi.org/10.1111/j.1095‐8312.1999.tb01160.x
Hill, J. K., Griffiths, H. M., & Thomas, C. D. (2011). Climate change and evolutionary adaptations at species' range margins. Annual Review of Entomology, 56, 143–159. https://doi.org/10.1146/annurev‐ento‐120709‐144746
Horton, M. W., Hancock, A. M., Huang, Y. S., Toomajian, C., Atwell, S., Auton, A., Muliyati, N. W., Platt, A., Sperone, F. G., Vilhjálmsson, B. J., Nordborg, M., Borevitz, J. O., & Bergelson, J. (2012). Genome‐wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nature Genetics, 44(2), 212–216. https://doi.org/10.1038/ng.1042
Hubby, J. L., & Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 54(2), 577–594. https://doi.org/10.1093/genetics/54.2.577
International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320. https://doi.org/10.1038/nature04226
International HapMap Consortium, Altshuler, D. M., Gibbs, R. A., Peltonen, L., Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E., Schaffner, S. F., Yu, F., Peltonen, L., Dermitzakis, E., Bonnen, P. E., Altshuler, D. M., Gibbs, R. A., de Bakker, P. I. W., Deloukas, P., Gabriel, S. B., Gwilliam, R., … McEwen, J. E. (2010). Integrating common and rare genetic variation in diverse human populations. Nature, 467(7311), 52–58. https://doi.org/10.1038/nature09298
International HapMap Consortium, Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., Pasternak, S., Wheeler, D. A., Willis, T. D., Yu, F., Yang, H., Zeng, C., Gao, Y., Hu, H., … Stewart, J. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861. https://doi.org/10.1038/nature06258
James, J. E., Lanfear, R., & Eyre‐Walker, A. (2016). Molecular evolutionary consequences of Island colonization. Genome Biology and Evolution, 8(6), 1876–1888. https://doi.org/10.1093/gbe/evw120
Jiang, Z., Song, G., Luo, X., Zhang, D., Lei, F., & Qu, Y. (2023). Recurrent selection and reduction in recombination shape the genomic landscape of divergence across multiple population pairs of green‐backed tit. Evolution Letters, 7(2), 99–111. https://doi.org/10.1093/evlett/qrad005
Jiggins, C. D., & Martin, S. H. (2017). Glittering gold and the quest for Isla de Muerta. Journal of Evolutionary Biology, 30(8), 1509–1511. https://doi.org/10.1111/jeb.13110
Johri, P., Charlesworth, B., & Jensen, J. D. (2020). Toward an evolutionarily appropriate null model: Jointly inferring demography and purifying selection. Genetics, 215(1), 173–192.
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K., Paiva, S., Barendse, W., Ciani, E., Raadsma, H., McEwan, J., Dalrymple, B., & International Sheep Genomics Consortium Members. (2012). Genome‐wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. https://doi.org/10.1371/journal.pbio.1001258
Kim, J. M., Santure, A. W., Barton, H. J., Quinn, J. L., Cole, E. F., Great Tit HapMap Consortium, Visser, M. E., Sheldon, B. C., Groenen, M. A. M., van Oers, K., & Slate, J. (2018). A high‐density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour. Molecular Ecology Resources, 18(4), 877–891. https://doi.org/10.1111/1755‐0998.12778
Kirby, A., Kang, H. M., Wade, C. M., Cotsapas, C., Kostem, E., Han, B., Furlotte, N., Kang, E. Y., Rivas, M., Bogue, M. A., Frazer, K. A., Johnson, F. M., Beilharz, E. J., Cox, D. R., Eskin, E., & Daly, M. J. (2010). Fine mapping in 94 inbred mouse strains using a high‐density haplotype resource. Genetics, 185(3), 1081–1095. https://doi.org/10.1534/genetics.110.115014
Kvist, L., Martens, J., Higuchi, H., Nazarenko, A. A., Valchuk, O. P., & Orell, M. (2003). Evolution and genetic structure of the great tit (Parus major) complex. Proceedings of the Royal Society B: Biological Sciences, 270(1523), 1447–1454. https://doi.org/10.1098/rspb.2002.2321
Kvist, L., Ruokonen, M., Lumme, J., & Orell, M. (1999). The colonization history and present‐day population structure of the European great tit (Parus major major). Heredity, 82, 495–502. https://doi.org/10.1038/sj.hdy.6885130
Laine, V. N., Gossmann, T. I., Schachtschneider, K. M., Garroway, C. J., Madsen, O., Verhoeven, K. J. F., de Jager, V., Megens, H.‐J., Warren, W. C., Minx, P., Crooijmans, R. P. M. A., Corcoran, P., Great Tit HapMap Consortium, Sheldon, B. C., Slate, J., Zeng, K., van Oers, K., Visser, M. E., & Groenen, M. A. M. (2016). Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications, 7, 10474. https://doi.org/10.1038/ncomms10474
Lanfear, R., Kokko, H., & Eyre‐Walker, A. (2014). Population size and the rate of evolution. Trends in Ecology & Evolution, 29(1), 33–41. https://doi.org/10.1016/j.tree.2013.09.009
Lemoine, M., Lucek, K., Perrier, C., Saladin, V., Adriaensen, F., Barba, E., Belda, E. J., Charmantier, A., Cichon, M., Eeva, T., Grégoire, A., Hinde, C., Johnsen, A., Komdeur, J., Mänd, R., Matthysen, E., Norte, A. C., Pitala, N., Sheldon, B. C., … Richner, H. (2016). Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biological Journal of the Linnean Society, 118(3), 668–685. https://doi.org/10.1111/bij.12745
Lewontin, R. C., & Hubby, J. L. (1966). A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 54(2), 595–609. https://doi.org/10.1093/genetics/54.2.595
Lindblad‐Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M., Chang, J. L., Kulbokas, E. J., 3rd, Zody, M. C., Mauceli, E., Xie, X., Breen, M., Wayne, R. K., Ostrander, E. A., Ponting, C. P., Galibert, F., Smith, D. R., DeJong, P. J., … Lander, E. S. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438(7069), 803–819. https://doi.org/10.1038/nature04338
Logan, C. A., & Somero, G. N. (2011). Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 300(6), R1373–R1383. https://doi.org/10.1152/ajpregu.00689.2010
Lohse, K. (2017). Come on feel the noise – From metaphors to null models. Journal of Evolutionary Biology, 30(8), 1506–1508. https://doi.org/10.1111/jeb.13109
Ma, T., Wang, K., Hu, Q., Xi, Z., Wan, D., Wang, Q., Feng, J., Jiang, D., Ahani, H., Abbott, R. J., Lascoux, M., Nevo, E., & Liu, J. (2018). Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E236–E243. https://doi.org/10.1073/pnas.1713288114
Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F., Blaxter, M., Manica, A., Mallet, J., & Jiggins, C. D. (2013). Genome‐wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research, 23(11), 1817–1828. https://doi.org/10.1101/gr.159426.113
Migliano, A. B., Romero, I. G., Metspalu, M., Leavesley, M., Pagani, L., Antao, T., Huang, D.‐W., Sherman, B. T., Siddle, K., Scholes, C., Hudjashov, G., Kaitokai, E., Babalu, A., Belatti, M., Cagan, A., Hopkinshaw, B., Shaw, C., Nelis, M., Metspalu, E., … Kivisild, T. (2013). Evolution of the pygmy phenotype: Evidence of positive selection fro genome‐wide scans in African, Asian, and Melanesian pygmies. Human Biology, 85(1–3), 251–284. https://doi.org/10.3378/027.085.0313
Mueller, J. C., Kuhl, H., Boerno, S., Tella, J. L., Carrete, M., & Kempenaers, B. (2018). Evolution of genomic variation in the burrowing owl in response to recent colonization of urban areas. Proceedings of the Biological Sciences, 285(1878), 20180206. https://doi.org/10.1098/rspb.2018.0206
Nadeau, N. J., Whibley, A., Jones, R. T., Davey, J. W., Dasmahapatra, K. K., Baxter, S. W., Quail, M. A., Joron, M., ffrench‐Constant, R. H., Blaxter, M. L., Mallet, J., & Jiggins, C. D. (2012). Genomic islands of divergence in hybridizing Heliconius butterflies identified by large‐scale targeted sequencing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1587), 343–353. https://doi.org/10.1098/rstb.2011.0198
Nei, M. (2005). Selectionism and neutralism in molecular evolution. Molecular Biology and Evolution, 22(12), 2318–2342. https://doi.org/10.1093/molbev/msi242
Noor, M. A., & Bennett, S. M. (2009). Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity (Edinb), 103(6), 439–444. https://doi.org/10.1038/hdy.2009.151
O'Connell, J., Gurdasani, D., Delaneau, O., Pirastu, N., Ulivi, S., Cocca, M., Traglia, M., Huang, J., Huffman, J. E., Rudan, I., & Marchini, J. (2014). A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genetics, 10(4), e1004234. https://doi.org/10.1371/journal.pgen.1004234
Parejo, M., Talenti, A., Richardson, M., Vignal, A., Barnett, M., & Wragg, D. (2023). AmelHap: Leveraging drone whole‐genome sequence data to create a honey bee HapMap. Scientific Data, 10(1), 198.
Perrier, C., & Charmantier, A. (2019). On the importance of time scales when studying adaptive evolution. Evolution Letters, 3(3), 240–247. https://doi.org/10.1002/evl3.86
Perrier, C., Rougemont, Q., & Charmantier, A. (2020). Demographic history and genomics of local adaptation in blue tit populations. Evolutionary Applications, 13(6), 1145–1165. https://doi.org/10.1111/eva.13035
Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome‐wide allele frequency data. PLoS Genetics, 8(11), e1002967. https://doi.org/10.1371/journal.pgen.1002967
Poelstra, J. W., Vijay, N., Bossu, C. M., Lantz, H., Ryll, B., Muller, I., Baglione, V., Unneberg, P., Wikelski, M., Grabherr, M. G., & Wolf, J. B. (2014). The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science, 344(6190), 1410–1414. https://doi.org/10.1126/science.1253226
Postma, E., & van Noordwijk, A. J. (2005). Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature, 433(7021), 65–68. https://doi.org/10.1038/nature03083
Purcell, S., Neale, B., Todd‐Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole‐genome association and population‐based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795
R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlovic, M., Noor, M. A. F., Mehlig, B., & Westram, A. M. (2017). Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. Journal of Evolutionary Biology, 30(8), 1450–1477. https://doi.org/10.1111/jeb.13047
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24(17), 4348–4370. https://doi.org/10.1111/mec.13322
Renaut, S., Grassa, C. J., Yeaman, S., Moyers, B. T., Lai, Z., Kane, N. C., Bowers, J. E., Burke, J. M., & Rieseberg, L. H. (2013). Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nature Communications, 4, 1827. https://doi.org/10.1038/ncomms2833
Salmón, P., Jacobs, A., Ahrén, D., Biard, C., Dingemanse, N. J., Dominoni, D. M., Helm, B., Lundberg, M., Senar, J. C., Sprau, P., & Sprau, P. (2021). Continent‐wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nature Communications, 12(1), 2983. https://doi.org/10.1038/s41467‐021‐23027‐w
Samuk, K., Owens, G. L., Delmore, K. E., Miller, S. E., Rennison, D. J., & Schluter, D. (2017). Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Molecular Ecology, 26(17), 4378–4390. https://doi.org/10.1111/mec.14226
Sendell‐Price, A. T., Ruegg, K. C., Robertson, B. C., & Clegg, S. M. (2021). An Island‐hopping bird reveals how founder events shape genome‐wide divergence. Molecular Ecology, 30(11), 2495–2510. https://doi.org/10.1111/mec.15898
Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
Shang, H., Field, D. L., Paun, O., Rendón‐Anaya, M., Hess, J., Vogl, C., Liu, J., Ingvarsson, P. K., Lexer, C., & Leroy, T. (2023). Drivers of genomic landscapes of differentiation across a Populus divergence gradient. Molecular Ecology, 32(15), 4348–4361. https://doi.org/10.1111/mec.17034
Tang, K., Thornton, K. R., & Stoneking, M. (2007). A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology, 5(7), 1587–1602. https://doi.org/10.1371/journal.pbio.0050171
Turner, T. L., & Hahn, M. W. (2010). Genomic islands of speciation or genomic islands and speciation? Molecular Ecology, 19(5), 848–850. https://doi.org/10.1111/j.1365‐294X.2010.04532.x
Turner, T. L., Hahn, M. W., & Nuzhdin, S. V. (2005). Genomic islands of speciation in Anopheles gambiae. PLoS Biology, 3(9), e285. https://doi.org/10.1371/journal.pbio.0030285
Van Doren, B. M., Campagna, L., Helm, B., Illera, J. C., Lovette, I. J., & Liedvogel, M. (2017). Correlated patterns of genetic diversity and differentiation across an avian family. Molecular Ecology, 26(15), 3982–3997. https://doi.org/10.1111/mec.14083
van Oers, K., Santure, A. W., De Cauwer, I., van Bers, N. E. M., Crooijmans, R., Sheldon, B. C., Visser, M. E., Slate, J., & Groenen, M. A. M. (2014). Replicated high‐density genetic maps of two great tit populations reveal fine‐scale genomic departures from sex‐equal recombination rates. Heredity, 112(3), 307–316. https://doi.org/10.1038/hdy.2013.107
Videvall, E., Cornwallis, C. K., Palinauskas, V., Valkiunas, G., & Hellgren, O. (2015). The avian transcriptome response to malaria infection. Molecular Biology and Evolution, 32(5), 1255–1267. https://doi.org/10.1093/molbev/msv016
Vijay, N., Weissensteiner, M., Burri, R., Kawakami, T., Ellegren, H., & Wolf, J. B. W. (2017). Genomewide patterns of variation in genetic diversity are shared among populations, species and higher‐order taxa. Molecular Ecology, 26(16), 4284–4295. https://doi.org/10.1111/mec.14195
Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M., & Lessells, C. M. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1408), 1867–1870. https://doi.org/10.1098/rspb.1998.0514
Weiss‐Lehman, C., Hufbauer, R. A., & Melbourne, B. A. (2017). Rapid trait evolution drives increased speed and variance in experimental range expansions. Nature Communications, 8, 14303. https://doi.org/10.1038/ncomms14303
Williamson, R. J., Josephs, E. B., Platts, A. E., Hazzouri, K. M., Haudry, A., Blanchette, M., & Wright, S. I. (2014). Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLoS Genetics, 10(9), e1004622. https://doi.org/10.1371/journal.pgen.1004622
Wolf, J. B., & Ellegren, H. (2017). Making sense of genomic islands of differentiation in light of speciation. Nature Reviews. Genetics, 18(2), 87–100. https://doi.org/10.1038/nrg.2016.133
Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. https://doi.org/10.1126/science.1251385
Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub