Investigating the Microstructure and Mechanical Properties of Aluminum-Matrix Reinforced-Graphene Nanosheet Composites Fabricated by Mechanical Milling and Equal-Channel Angular Pressing

. 2019 Jul 25 ; 9 (8) : . [epub] 20190725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31349688

Layered-graphene reinforced-metal matrix nanocomposites with excellent mechanical properties and low density are a new class of advanced materials for a broad range of applications. A facile three-step approach based on ultra-sonication for dispersion of graphene nanosheets (GNSs), ball milling for Al-powder mixing with different weight percentages of GNSs, and equal-channel angular pressing for powders' consolidation at 200 °C was applied for nanocomposite fabrication. The Raman analysis revealed that the GNSs in the sample with 0.25 wt.% GNSs were exfoliated by the creation of some defects and disordering. X-ray diffraction and microstructural analysis confirmed that the interaction of the GNSs and the matrix was almost mechanical, interfacial bonding. The density test demonstrated that all samples except the 1 wt.% GNSs were fully densified due to the formation of microvoids, which were observed in the scanning electron microscope analysis. Investigation of the mechanical properties showed that by using Al powders with commercial purity, the 0.25 wt.% GNS sample possessed the maximum hardness, ultimate shear strength, and uniform normal displacement in comparison with the other samples. The highest mechanical properties were observed in the 0.25 wt.% GNSs composite, resulting from the embedding of exfoliated GNSs between Al powders, excellent mechanical bonding, and grain refinement. In contrast, agglomerated GNSs and the existence of microvoids caused deterioration of the mechanical properties in the 1 wt.% GNSs sample.

Zobrazit více v PubMed

Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI

Kumar P., Yu S., Shahzad F., Hong S.M., Kim Y.-H., Koo C.M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon. 2016;101:120–128. doi: 10.1016/j.carbon.2016.01.088. DOI

Choi W., Lahiri I., Seelaboyina R., Kang Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 2010;35:52–71. doi: 10.1080/10408430903505036. DOI

Lee W.C., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. PubMed

Wang Y., Li Z., Wang J., Li J., Lin Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–212. doi: 10.1016/j.tibtech.2011.01.008. PubMed DOI PMC

Zhang Y., Zhang L., Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013;46:2329–2339. doi: 10.1021/ar300203n. PubMed DOI

Yi M., Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 2015;3:11700–11715. doi: 10.1039/C5TA00252D. DOI

Son M., Ham M.-H. Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem. 2017;5:40–49. doi: 10.1016/j.flatc.2017.07.002. DOI

Rezvani E., Hatamie A., Berahman M., Simchi M., Angizi S., Rahmati R., Kennedy J., Simchi A. Synthesis, First-Principle Simulation, and Application of Three-Dimensional Ceria Nanoparticles/Graphene Nanocomposite for Non-Enzymatic Hydrogen Peroxide Detection. J. Electrochem. Soc. 2019;166:H3167–H3174. doi: 10.1149/2.0191905jes. DOI

Habib M.R., Liang T., Yu X., Pi X., Liu Y., Xu M. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: Nucleation, growth, and the role of hydrogen and oxygen. Rep. Prog. Phys. 2018;81:036501. doi: 10.1088/1361-6633/aa9bbf. PubMed DOI

Sun R., Li L., Feng C., Kitipornchai S., Yang J. Tensile property enhancement of defective graphene/epoxy nanocomposite by hydrogen functionalization. Compos. Struct. 2019;224:111079. doi: 10.1016/j.compstruct.2019.111079. DOI

Dhand C., Dwivedi N., Loh X.J., Ying A.N.J., Verma N.K., Beuerman R.W., Lakshminarayanan R., Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. Rsc Adv. 2015;5:105003–105037. doi: 10.1039/C5RA19388E. DOI

Guo H., Lv R., Bai S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019;1:101–115. doi: 10.1016/j.nanoms.2019.03.003. DOI

Pal N., Dubey P., Gopinath P., Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int. J. Biol. Macromol. 2017;95:94–105. doi: 10.1016/j.ijbiomac.2016.11.041. PubMed DOI

Cui Y., Kundalwal S., Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–333. doi: 10.1016/j.carbon.2015.11.018. DOI

Huang H.-D., Ren P.-G., Xu J.-Z., Xu L., Zhong G.-J., Hsiao B.S., Li Z.-M. Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets. J. Membr. Sci. 2014;464:110–118. doi: 10.1016/j.memsci.2014.04.009. DOI

Liu J., Yan H., Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013;39:6215–6221. doi: 10.1016/j.ceramint.2013.01.041. DOI

Fan Y., Wang L., Li J., Li J., Sun S., Chen F., Chen L., Jiang W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010;48:1743–1749. doi: 10.1016/j.carbon.2010.01.017. DOI

Barfmal M., Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance. Ceram. Int. 2017;43:17167–17173. doi: 10.1016/j.ceramint.2017.09.140. DOI

Sheinerman A., Gutkin M.Y. Multiple cracking in deformed laminated metal-graphene composites. Compos. Struct. 2018;191:113–118. doi: 10.1016/j.compstruct.2018.02.029. DOI

Nieto A., Bisht A., Lahiri D., Zhang C., Agarwal A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2017;62:241–302. doi: 10.1080/09506608.2016.1219481. DOI

Rashad M., Pan F.S., Asif M., Ullah A. Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids. Mater. Sci. Technol. 2015;31:1452–1461. doi: 10.1179/1743284714Y.0000000726. DOI

Rashad M., Pan F., Tang A., Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 2014;24:101–108. doi: 10.1016/j.pnsc.2014.03.012. DOI

Simões S., Viana F., Reis M.A., Vieira M.F. Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos. Struct. 2014;108:992–1000. doi: 10.1016/j.compstruct.2013.10.043. DOI

Surappa M. Aluminium matrix composites: Challenges and opportunities. Sadhana. 2003;28:319–334. doi: 10.1007/BF02717141. DOI

Rashad M., Pan F., Yu Z., Asif M., Lin H., Pan R. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci. Mater. Int. 2015;25:460–470. doi: 10.1016/j.pnsc.2015.09.005. DOI

Zare H., Jahedi M., Toroghinejad M.R., Meratian M., Knezevic M. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Mater. Des. 2016;106:112–119. doi: 10.1016/j.matdes.2016.05.109. DOI

Li G., Xiong B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 2017;697:31–36. doi: 10.1016/j.jallcom.2016.12.147. DOI

Saboori A., Pavese M., Badini C., Fino P. Microstructure and thermal conductivity of Al–Graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. (Engl. Lett.) 2017;30:675–687. doi: 10.1007/s40195-017-0579-2. DOI

Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI

Esmaeili A., Shaeri M.H., Noghani M.T., Razaghian A. Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. J. Alloy. Compd. 2018;757:324–332. doi: 10.1016/j.jallcom.2018.05.085. DOI

Jahedi M., Paydar M.H. Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater. Sci. Eng. A. 2010;527:5273–5279. doi: 10.1016/j.msea.2010.04.088. DOI

Ebrahimi S.S., Dehghani K., Aghazadeh J., Ghasemian M., Zangeneh S. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 2018;718:311–320. doi: 10.1016/j.msea.2018.01.130. DOI

Ansarian I., Shaeri M., Ebrahimi M., Minárik P., Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J. Alloy. Compd. 2019;776:83–95. doi: 10.1016/j.jallcom.2018.10.196. DOI

Chinh N.Q., Jenei P., Gubicza J., Bobruk E.V., Valiev R.Z., Langdon T.G. Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Mater. Lett. 2017;186:334–337. doi: 10.1016/j.matlet.2016.09.114. DOI

Zhao L., Lu H., Gao Z. Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion. Adv. Eng. Mater. 2015;17:976–981. doi: 10.1002/adem.201400375. DOI

Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI

Syukron M., Ojima M., Seman A.A., Hussain Z., Koseki T. Mechanical properties of 1.5 wt.% TiB2-added hypoeutectic Al-Mg-Si alloys processed by equal channel angular pressing. Procedia Chem. 2016;19:106–112. doi: 10.1016/j.proche.2016.03.122. DOI

Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI

Shaeri M., Salehi M., Seyyedein S., Abutalebi M., Park J.K. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater. Des. 2014;57:250–257. doi: 10.1016/j.matdes.2014.01.008. DOI

Afifi M.A., Wang Y.C., Pereira P.H.R., Huang Y., Wang Y., Cheng X., Li S., Langdon T.G. Effect of heat treatments on the microstructures and tensile properties of an ultrafine-grained Al-Zn-Mg alloy processed by ECAP. J. Alloy. Compd. 2018;749:567–574. doi: 10.1016/j.jallcom.2018.03.206. DOI

Huang Y., Bazarnik P., Wan D., Luo D., Pereira P.H.R., Lewandowska M., Yao J., Hayden B.E., Langdon T.G. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Mater. 2019;164:499–511. doi: 10.1016/j.actamat.2018.10.060. DOI

Chegini M., Shaeri M.H. Effect of equal channel angular pressing on the mechanical and tribological behavior of Al-Zn-Mg-Cu alloy. Mater. Charact. 2018;140:147–161. doi: 10.1016/j.matchar.2018.03.045. DOI

Dashti A., Shaeri M., Taghiabadi R., Djavanroodi F., Vali Ghazvini F., Javadi H. Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging. Materials. 2018;11:2419. doi: 10.3390/ma11122419. PubMed DOI PMC

Haghighi M., Shaeri M., Sedghi A., Djavanroodi F. Effect of Graphene Nanosheets Content on Microstructure and Mechanical Properties of Titanium Matrix Composite Produced by Cold Pressing and Sintering. Nanomaterials. 2018;8:1024. doi: 10.3390/nano8121024. PubMed DOI PMC

Yue H., Yao L., Gao X., Zhang S., Guo E., Zhang H., Lin X., Wang B. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites. J. Alloy. Compd. 2017;691:755–762. doi: 10.1016/j.jallcom.2016.08.303. DOI

Zhang H., Xu C., Xiao W., Ameyama K., Ma C. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng. A. 2016;658:8–15. doi: 10.1016/j.msea.2016.01.076. DOI

Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., Estrada-Guel I., Martínez-Sánchez R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloy. Compd. 2014;615:S578–S582. doi: 10.1016/j.jallcom.2014.01.225. DOI

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Wu J.B., Lin M.L., Cong X., Liu H.N., Tan P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI

Xing T., Li L.H., Hou L., Hu X., Zhou S., Peter R., Petravic M., Chen Y. Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon. 2013;57:515–519. doi: 10.1016/j.carbon.2013.02.029. DOI

Jeon I.-Y., Choi H.-J., Jung S.-M., Seo J.-M., Kim M.-J., Dai L., Baek J.-B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2012;135:1386–1393. doi: 10.1021/ja3091643. PubMed DOI

Arao Y., Tanks J., Aida K., Kubouchi M. Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents. J. Mater. Sci. 2019;54:4546–4558. doi: 10.1007/s10853-018-3156-9. DOI

Mahmoud A.E.D., Stolle A., Stelter M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 2018;6:6358–6369. doi: 10.1021/acssuschemeng.8b00147. DOI

Dash P., Dash T., Rout T.K., Sahu A.K., Biswal S.K., Mishra B.K. Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 2016;6:12657–12668. doi: 10.1039/C5RA26491J. DOI

Kumar P., Harivignesh J. Grain Refinement Through Design Modification of ECAP Dies. Int. J. Mech. Prod. Eng. Res. Dev. 2018;8:35–42.

Kumar S., Ostrikov K.K. Unidirectional arrays of vertically standing graphenes in reactive plasmas. Nanoscale. 2011;3:4296–4300. doi: 10.1039/c1nr10860c. PubMed DOI

Zare H., Jahedi M., Toroghinejad M.R., Meratian M., Knezevic M. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing. Mater. Sci. Eng. A. 2016;670:205–216. doi: 10.1016/j.msea.2016.06.027. DOI

Du X., Chen R., Liu F. Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites. Dig. J. Nanomater. Biostruct. (DJNB) 2017;12:37–45.

Bisht A., Srivastava M., Kumar R.M., Lahiri I., Lahiri D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A. 2017;695:20–28. doi: 10.1016/j.msea.2017.04.009. DOI

Ibrahim I., Mohamed F., Lavernia E. Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 1991;26:1137–1156. doi: 10.1007/BF00544448. DOI

Boostani A.F., Yazdani S., Mousavian R.T., Tahamtan S., Khosroshahi R.A., Wei D., Brabazon D., Xu J., Zhang X., Jiang Z. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater. Des. 2015;88:983–989. doi: 10.1016/j.matdes.2015.09.063. DOI

Bastwros M., Kim G.-Y., Zhu C., Zhang K., Wang S., Tang X., Wang X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 2014;60:111–118. doi: 10.1016/j.compositesb.2013.12.043. DOI

Mishra R.K., Gupta A.K., Rao P.R., Sachdev A.K., Kumar A.M., Luo A.A. Influence of cerium on texture and ductility of magnesium extrusions. Scr. Mater. 2008;59:562–565. doi: 10.1016/j.scriptamat.2008.05.019. DOI

Von Mises R. Göttingen Nachrichten, Math. Phys. Klasse. 1913;1:582–592.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...