Investigating the Microstructure and Mechanical Properties of Aluminum-Matrix Reinforced-Graphene Nanosheet Composites Fabricated by Mechanical Milling and Equal-Channel Angular Pressing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31349688
PubMed Central
PMC6723021
DOI
10.3390/nano9081070
PII: nano9081070
Knihovny.cz E-zdroje
- Klíčová slova
- Graphene nanosheets, aluminum matrix, ball milling, equal-channel angular pressing (ECAP), mechanical properties, microstructure,
- Publikační typ
- časopisecké články MeSH
Layered-graphene reinforced-metal matrix nanocomposites with excellent mechanical properties and low density are a new class of advanced materials for a broad range of applications. A facile three-step approach based on ultra-sonication for dispersion of graphene nanosheets (GNSs), ball milling for Al-powder mixing with different weight percentages of GNSs, and equal-channel angular pressing for powders' consolidation at 200 °C was applied for nanocomposite fabrication. The Raman analysis revealed that the GNSs in the sample with 0.25 wt.% GNSs were exfoliated by the creation of some defects and disordering. X-ray diffraction and microstructural analysis confirmed that the interaction of the GNSs and the matrix was almost mechanical, interfacial bonding. The density test demonstrated that all samples except the 1 wt.% GNSs were fully densified due to the formation of microvoids, which were observed in the scanning electron microscope analysis. Investigation of the mechanical properties showed that by using Al powders with commercial purity, the 0.25 wt.% GNS sample possessed the maximum hardness, ultimate shear strength, and uniform normal displacement in comparison with the other samples. The highest mechanical properties were observed in the 0.25 wt.% GNSs composite, resulting from the embedding of exfoliated GNSs between Al powders, excellent mechanical bonding, and grain refinement. In contrast, agglomerated GNSs and the existence of microvoids caused deterioration of the mechanical properties in the 1 wt.% GNSs sample.
Department of Chemistry and Chemical Biology McMaster University Hamilton ON L8S 4M1 Canada
Department of Mechanical Engineering Imperial College London London SW7 UK
Mechanical Engineering Department Prince Mohammad Bin Fahd University Al Khobar 31952 Saudi Arabia
Zobrazit více v PubMed
Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019;1:31–47. doi: 10.1016/j.nanoms.2019.02.004. DOI
Kumar P., Yu S., Shahzad F., Hong S.M., Kim Y.-H., Koo C.M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon. 2016;101:120–128. doi: 10.1016/j.carbon.2016.01.088. DOI
Choi W., Lahiri I., Seelaboyina R., Kang Y.S. Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 2010;35:52–71. doi: 10.1080/10408430903505036. DOI
Lee W.C., Loh K.P., Lim C.T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–250. PubMed
Wang Y., Li Z., Wang J., Li J., Lin Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–212. doi: 10.1016/j.tibtech.2011.01.008. PubMed DOI PMC
Zhang Y., Zhang L., Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013;46:2329–2339. doi: 10.1021/ar300203n. PubMed DOI
Yi M., Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A. 2015;3:11700–11715. doi: 10.1039/C5TA00252D. DOI
Son M., Ham M.-H. Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem. 2017;5:40–49. doi: 10.1016/j.flatc.2017.07.002. DOI
Rezvani E., Hatamie A., Berahman M., Simchi M., Angizi S., Rahmati R., Kennedy J., Simchi A. Synthesis, First-Principle Simulation, and Application of Three-Dimensional Ceria Nanoparticles/Graphene Nanocomposite for Non-Enzymatic Hydrogen Peroxide Detection. J. Electrochem. Soc. 2019;166:H3167–H3174. doi: 10.1149/2.0191905jes. DOI
Habib M.R., Liang T., Yu X., Pi X., Liu Y., Xu M. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: Nucleation, growth, and the role of hydrogen and oxygen. Rep. Prog. Phys. 2018;81:036501. doi: 10.1088/1361-6633/aa9bbf. PubMed DOI
Sun R., Li L., Feng C., Kitipornchai S., Yang J. Tensile property enhancement of defective graphene/epoxy nanocomposite by hydrogen functionalization. Compos. Struct. 2019;224:111079. doi: 10.1016/j.compstruct.2019.111079. DOI
Dhand C., Dwivedi N., Loh X.J., Ying A.N.J., Verma N.K., Beuerman R.W., Lakshminarayanan R., Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. Rsc Adv. 2015;5:105003–105037. doi: 10.1039/C5RA19388E. DOI
Guo H., Lv R., Bai S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019;1:101–115. doi: 10.1016/j.nanoms.2019.03.003. DOI
Pal N., Dubey P., Gopinath P., Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int. J. Biol. Macromol. 2017;95:94–105. doi: 10.1016/j.ijbiomac.2016.11.041. PubMed DOI
Cui Y., Kundalwal S., Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–333. doi: 10.1016/j.carbon.2015.11.018. DOI
Huang H.-D., Ren P.-G., Xu J.-Z., Xu L., Zhong G.-J., Hsiao B.S., Li Z.-M. Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets. J. Membr. Sci. 2014;464:110–118. doi: 10.1016/j.memsci.2014.04.009. DOI
Liu J., Yan H., Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013;39:6215–6221. doi: 10.1016/j.ceramint.2013.01.041. DOI
Fan Y., Wang L., Li J., Li J., Sun S., Chen F., Chen L., Jiang W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon. 2010;48:1743–1749. doi: 10.1016/j.carbon.2010.01.017. DOI
Barfmal M., Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance. Ceram. Int. 2017;43:17167–17173. doi: 10.1016/j.ceramint.2017.09.140. DOI
Sheinerman A., Gutkin M.Y. Multiple cracking in deformed laminated metal-graphene composites. Compos. Struct. 2018;191:113–118. doi: 10.1016/j.compstruct.2018.02.029. DOI
Nieto A., Bisht A., Lahiri D., Zhang C., Agarwal A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2017;62:241–302. doi: 10.1080/09506608.2016.1219481. DOI
Rashad M., Pan F.S., Asif M., Ullah A. Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids. Mater. Sci. Technol. 2015;31:1452–1461. doi: 10.1179/1743284714Y.0000000726. DOI
Rashad M., Pan F., Tang A., Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 2014;24:101–108. doi: 10.1016/j.pnsc.2014.03.012. DOI
Simões S., Viana F., Reis M.A., Vieira M.F. Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos. Struct. 2014;108:992–1000. doi: 10.1016/j.compstruct.2013.10.043. DOI
Surappa M. Aluminium matrix composites: Challenges and opportunities. Sadhana. 2003;28:319–334. doi: 10.1007/BF02717141. DOI
Rashad M., Pan F., Yu Z., Asif M., Lin H., Pan R. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci. Mater. Int. 2015;25:460–470. doi: 10.1016/j.pnsc.2015.09.005. DOI
Zare H., Jahedi M., Toroghinejad M.R., Meratian M., Knezevic M. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Mater. Des. 2016;106:112–119. doi: 10.1016/j.matdes.2016.05.109. DOI
Li G., Xiong B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 2017;697:31–36. doi: 10.1016/j.jallcom.2016.12.147. DOI
Saboori A., Pavese M., Badini C., Fino P. Microstructure and thermal conductivity of Al–Graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. (Engl. Lett.) 2017;30:675–687. doi: 10.1007/s40195-017-0579-2. DOI
Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038. DOI
Esmaeili A., Shaeri M.H., Noghani M.T., Razaghian A. Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. J. Alloy. Compd. 2018;757:324–332. doi: 10.1016/j.jallcom.2018.05.085. DOI
Jahedi M., Paydar M.H. Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater. Sci. Eng. A. 2010;527:5273–5279. doi: 10.1016/j.msea.2010.04.088. DOI
Ebrahimi S.S., Dehghani K., Aghazadeh J., Ghasemian M., Zangeneh S. Investigation on microstructure and mechanical properties of Al/Al-Zn-Mg–Cu laminated composite fabricated by accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 2018;718:311–320. doi: 10.1016/j.msea.2018.01.130. DOI
Ansarian I., Shaeri M., Ebrahimi M., Minárik P., Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J. Alloy. Compd. 2019;776:83–95. doi: 10.1016/j.jallcom.2018.10.196. DOI
Chinh N.Q., Jenei P., Gubicza J., Bobruk E.V., Valiev R.Z., Langdon T.G. Influence of Zn content on the microstructure and mechanical performance of ultrafine-grained Al–Zn alloys processed by high-pressure torsion. Mater. Lett. 2017;186:334–337. doi: 10.1016/j.matlet.2016.09.114. DOI
Zhao L., Lu H., Gao Z. Microstructure and mechanical properties of Al/graphene composite produced by high-pressure torsion. Adv. Eng. Mater. 2015;17:976–981. doi: 10.1002/adem.201400375. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Syukron M., Ojima M., Seman A.A., Hussain Z., Koseki T. Mechanical properties of 1.5 wt.% TiB2-added hypoeutectic Al-Mg-Si alloys processed by equal channel angular pressing. Procedia Chem. 2016;19:106–112. doi: 10.1016/j.proche.2016.03.122. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Shaeri M., Salehi M., Seyyedein S., Abutalebi M., Park J.K. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater. Des. 2014;57:250–257. doi: 10.1016/j.matdes.2014.01.008. DOI
Afifi M.A., Wang Y.C., Pereira P.H.R., Huang Y., Wang Y., Cheng X., Li S., Langdon T.G. Effect of heat treatments on the microstructures and tensile properties of an ultrafine-grained Al-Zn-Mg alloy processed by ECAP. J. Alloy. Compd. 2018;749:567–574. doi: 10.1016/j.jallcom.2018.03.206. DOI
Huang Y., Bazarnik P., Wan D., Luo D., Pereira P.H.R., Lewandowska M., Yao J., Hayden B.E., Langdon T.G. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Mater. 2019;164:499–511. doi: 10.1016/j.actamat.2018.10.060. DOI
Chegini M., Shaeri M.H. Effect of equal channel angular pressing on the mechanical and tribological behavior of Al-Zn-Mg-Cu alloy. Mater. Charact. 2018;140:147–161. doi: 10.1016/j.matchar.2018.03.045. DOI
Dashti A., Shaeri M., Taghiabadi R., Djavanroodi F., Vali Ghazvini F., Javadi H. Microstructure, Texture, Electrical and Mechanical Properties of AA-6063 Processed by Multi Directional Forging. Materials. 2018;11:2419. doi: 10.3390/ma11122419. PubMed DOI PMC
Haghighi M., Shaeri M., Sedghi A., Djavanroodi F. Effect of Graphene Nanosheets Content on Microstructure and Mechanical Properties of Titanium Matrix Composite Produced by Cold Pressing and Sintering. Nanomaterials. 2018;8:1024. doi: 10.3390/nano8121024. PubMed DOI PMC
Yue H., Yao L., Gao X., Zhang S., Guo E., Zhang H., Lin X., Wang B. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites. J. Alloy. Compd. 2017;691:755–762. doi: 10.1016/j.jallcom.2016.08.303. DOI
Zhang H., Xu C., Xiao W., Ameyama K., Ma C. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng. A. 2016;658:8–15. doi: 10.1016/j.msea.2016.01.076. DOI
Pérez-Bustamante R., Bolaños-Morales D., Bonilla-Martínez J., Estrada-Guel I., Martínez-Sánchez R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloy. Compd. 2014;615:S578–S582. doi: 10.1016/j.jallcom.2014.01.225. DOI
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Wu J.B., Lin M.L., Cong X., Liu H.N., Tan P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI
Xing T., Li L.H., Hou L., Hu X., Zhou S., Peter R., Petravic M., Chen Y. Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon. 2013;57:515–519. doi: 10.1016/j.carbon.2013.02.029. DOI
Jeon I.-Y., Choi H.-J., Jung S.-M., Seo J.-M., Kim M.-J., Dai L., Baek J.-B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2012;135:1386–1393. doi: 10.1021/ja3091643. PubMed DOI
Arao Y., Tanks J., Aida K., Kubouchi M. Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents. J. Mater. Sci. 2019;54:4546–4558. doi: 10.1007/s10853-018-3156-9. DOI
Mahmoud A.E.D., Stolle A., Stelter M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 2018;6:6358–6369. doi: 10.1021/acssuschemeng.8b00147. DOI
Dash P., Dash T., Rout T.K., Sahu A.K., Biswal S.K., Mishra B.K. Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 2016;6:12657–12668. doi: 10.1039/C5RA26491J. DOI
Kumar P., Harivignesh J. Grain Refinement Through Design Modification of ECAP Dies. Int. J. Mech. Prod. Eng. Res. Dev. 2018;8:35–42.
Kumar S., Ostrikov K.K. Unidirectional arrays of vertically standing graphenes in reactive plasmas. Nanoscale. 2011;3:4296–4300. doi: 10.1039/c1nr10860c. PubMed DOI
Zare H., Jahedi M., Toroghinejad M.R., Meratian M., Knezevic M. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing. Mater. Sci. Eng. A. 2016;670:205–216. doi: 10.1016/j.msea.2016.06.027. DOI
Du X., Chen R., Liu F. Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites. Dig. J. Nanomater. Biostruct. (DJNB) 2017;12:37–45.
Bisht A., Srivastava M., Kumar R.M., Lahiri I., Lahiri D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A. 2017;695:20–28. doi: 10.1016/j.msea.2017.04.009. DOI
Ibrahim I., Mohamed F., Lavernia E. Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 1991;26:1137–1156. doi: 10.1007/BF00544448. DOI
Boostani A.F., Yazdani S., Mousavian R.T., Tahamtan S., Khosroshahi R.A., Wei D., Brabazon D., Xu J., Zhang X., Jiang Z. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater. Des. 2015;88:983–989. doi: 10.1016/j.matdes.2015.09.063. DOI
Bastwros M., Kim G.-Y., Zhu C., Zhang K., Wang S., Tang X., Wang X. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 2014;60:111–118. doi: 10.1016/j.compositesb.2013.12.043. DOI
Mishra R.K., Gupta A.K., Rao P.R., Sachdev A.K., Kumar A.M., Luo A.A. Influence of cerium on texture and ductility of magnesium extrusions. Scr. Mater. 2008;59:562–565. doi: 10.1016/j.scriptamat.2008.05.019. DOI
Von Mises R. Göttingen Nachrichten, Math. Phys. Klasse. 1913;1:582–592.