V předložené práci je uvedena klinická studie 79 pacientů s chronickou bolestí. Těžištěm článku je diagnostikovat psychosociální faktory a vyhledat významnějších vztahy mezi proměnnými. Studie konstatuje, že při komplexní léčbě chronické bolesti je úloha klinického psychologa nezbytná. Výsledky ukazují, že na základě psychologické diagnostiky a jejího zhodnocení může klinický psycholog účelněji psychoterapeuticky působit u pacientů se zavedenou analgezií.
The article presents the results of a clinical study in 79 patients with chronic pain. The main aim of the study was to assess psychosocial factors and establish important relationships among variables. The study concludes key role in comprehensive treatment of chronic pain is played by the clinical psychologist. The results show that, using psychological assessment and its evaluation, the clinical psychologist may be useful in providing psychotherapy to patients with analgesia.
- MeSH
- Back Pain diagnosis drug therapy psychology MeSH
- Adult MeSH
- Hospitalization MeSH
- Middle Aged MeSH
- Humans MeSH
- Pain Threshold MeSH
- Surveys and Questionnaires methods MeSH
- Psychosocial Deprivation MeSH
- Aged MeSH
- Sensory Thresholds MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Case Reports MeSH
- Review MeSH
Data mohou nabývat různé formy. Je důležité vědět, v jaké formě se získávaná data vyskytují, abychom mohli zvolit nejvhodnější statistické metody pro jejich zpracování. Jedno z možných dělení rozlišuje data spojitá, diskrétní, ordinální a nominální.
Data may take many different forms. It is important to know what forms every variable takes before we can make a decision regarding the most appropriate statistical methods to use. One possible division distinguishes continuous, discrete, ordinal and nominal data.
Koncentrace glukózy v krvi není konstantní ani za fyziologického stavu, ale pohybuje se v závislosti na příjmu potravy, fyzické aktivitě, psychických a dalších faktorech v poměrně úzkém rozmezí přibližně mezi 3,9 a 7,5 mmol/l a nalačno za standardních podmínek v ještě užším intervalu 3,9–5,5 mmol/l. U diabetiků se kolísání hodnot glykemie zvyšuje, protože – jak vyplývá z definice diabetu – na jedné straně dochází k hyperglykemii, ale na druhé straně se díky nepřiměřenému účinku antidiabetické léčby objevují i hypoglykemie. Míra kolísání glykemie se nazývá glykemická variabilita (GV). Glykemická variabilita se dostává do centra pozornosti hned pro několik skutečností: zvýšená glykemická variabilita je spojena se zvýšeným výskytem hypoglykemií, možná se podílí na rozvoji pozdních komplikací diabetu, negativně ovlivňuje psychickou pohodu pacienta a konečně díky příchodu nové technologie – kontinuální monitorace glykemie – ji nyní dokážeme lépe popsat, změřit, zkoumat, ale i ovlivnit. Klíčová slova: glykemická variabilita – kontinuální monitorace glykemie – inzulinová pumpa – senzor
Blood glucose levels are not constant in ther human body even in physiological status. It fluctuates depending on food intake, exercise, psychological and other factors. Normally it fluctuates between 3.9 to 7.5 mmol/l and in fasting in the standard conditions it does not exceed even more narrow range 3.9 to 5.5 mmol/l. Fluctuations are more pronounced in patient with diabetes. Hyperglycemia is a common and basic pathology in diabetes, however, antidiabetic drug often cause hypoglycemia, both increasing the range for glucose fluctuations. The level of glucose fluctuation is called glycemic variability (GV). Glycemic variability is now a favorite target of scientific research in diabetology. Increased glycemic variability is associated with hypoglycemia, possibly may contribute to chronic diabetes complications and negatively influences quality of life of diabetic patients. Last but not least, thanks to the new technology of continuous glucose monitoring, we can better describe and measure it. Finally, glycemic variability emerges as a potentially important therapeutical target. Key words: continuous glucose monitoring – glycemic variability – insulin pump – sensor augmented pump
- Keywords
- Low Blood Suspend (LGS),
- MeSH
- Diabetes Mellitus drug therapy blood metabolism MeSH
- Glycated Hemoglobin MeSH
- Hyperglycemia blood prevention & control MeSH
- Hypoglycemia * blood metabolism prevention & control MeSH
- Data Interpretation, Statistical * MeSH
- Insulin administration & dosage MeSH
- Insulin Infusion Systems * standards MeSH
- Clinical Alarms MeSH
- Diabetes Complications etiology metabolism prevention & control MeSH
- Blood Glucose analysis MeSH
- Humans MeSH
- Logistic Models MeSH
- Oscillometry MeSH
- Oxidative Stress physiology MeSH
- Blood Glucose Self-Monitoring * standards MeSH
- Check Tag
- Humans MeSH
BACKGROUND AND AIMS: Obstructive sleep apnoea is a potentially serious sleep disorder associated with the risk of cardiovascular disease. It is treated with continuous airway pressure (CPAP) but this is not always successful. Unsuccessful cases should be treated by bilevel positive airway pressure (BiPAP). The aim of this study was to determine whether common respiratory parameters and/or body mass index (BMI) can be used to predict the probability CPAP failure and hence start such patients on BiPAP from the outset. METHODS: A sample of patients treated by CPAP for OSAS was evaluated a retrospective cohort study. The data measured in sleep monitoring of the successfully treated group and of the group where CPAP had failed were compared. Subsequently, the predictive abilities of BMI, Apnoea Index (AI), Apnoea-Hypopnea Index (AHI), percentage of sleep time in less than 90% oxygen saturation (T90), average oxygen saturation over the duration of sleep (SaO2) and average desaturation per hour of sleep (ODI) were assessed with respect to CPAP failure, both individually and in combination. RESULTS: A sample of 479 patients was included in the study. All of the recorded variables except AI were significantly associated with failure of CPAP and their ability to predict the failure ranged from poor to moderate. Since there was significant correlation among all the variables measured a two-variable prediction model combining T90 and BMI produced no significant improvement in the quality of CPAP failure prediction. CONCLUSIONS: BMI was a significant predictor of CPAP failure although it was slightly less predictive than T90. The set of monitored variables included in our study does not allow for CPAP failure to be predicted with clinically relevant reliability.
- MeSH
- Body Mass Index MeSH
- Middle Aged MeSH
- Humans MeSH
- Treatment Failure MeSH
- Obesity complications MeSH
- Sleep Apnea, Obstructive complications therapy MeSH
- Area Under Curve MeSH
- Retrospective Studies MeSH
- Risk Factors MeSH
- ROC Curve MeSH
- Continuous Positive Airway Pressure * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
Projekt sleduje vztahy mezi školními známkami, depresivními symptomy, inteligencí a vybranými neuropsycholgickými testy u dětí ve věku 9 až 11 let (N=814) ze 14 pražských základních škol. Depresivní děti (4,5% vzorku) měly ve srovnání se zbytkem souboru horší průměr známek. Známka z češtiny, známka z matematiky a průměr známek se vztahovaly především k inteligenci, dále k depresivní symptomatice a částečně k neuropsychologickým proměnným. Proměnné společně vysvětlovaly větší část rozptylu školních výsledků u dívek (24% až 32%) než u chlapců (17% až 24%). Pro praxi naše výsledky naznačují: 1) Inteligenční test je lepším prediktorem školního výkonu než neuropsychologické testy; 2) Zjištění depresivní symptomatiky je potřebnou součástí vyšetření problematických školních výkonů; 3) Námi registrované proměnné mohou vysvětlit přibližně čtvrtinu školního výkonu.
- MeSH
- Depression MeSH
- Child MeSH
- Financing, Organized MeSH
- Intelligence MeSH
- Intelligence Tests MeSH
- Data Interpretation, Statistical MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Personality Inventory MeSH
- Signs and Symptoms MeSH
- Statistics as Topic MeSH
- Learning MeSH
- Efficiency MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
Aj po správne stanovenej diagnóze prieduškovej astmy je úlohou imunoalergológa sústavne prehodnocovať stupeň závažnosti astmy a upravovať liečbu s cieľom optimalizovať jej kontrolu. Jedným zo základných znakov ochorenia je jej variabilita, ktorá vyžaduje od lekára neustály monitoring. Autori poukazujú na význam používania aj novších metód, ako je vyšetrenie dusíka vo vydychovanom vzduchu (FENO), dotazníka ACQ 5. Autori predstavujú pacienta, u ktorého aj napriek subjektívne dobrému stavu a fyziologickým parametrom funkčného vyšetrenia pľúc došlo k progresii ochorenia vyžadujúcej úpravu liečby.
Even after a correct diagnosis of the bronchial asthma the role of the immunoallergologist is a continuous re-assessment of the grade of asthma severity and a correction of the therapy targeted to optimal asthma control. One of the basic signs of the disease is its variability, which requires physician's continual monitoring. The authors point out the importance of using newer methods, as a measurement of nitrogen in exhaled air (FENO) and ACQ 5 questionnaire as well. The authors present a patient who despite subjectively perceived good condition experienced a progression of his disease that required the adjustment of the treatment.
- MeSH
- Anti-Asthmatic Agents * therapeutic use MeSH
- Administration, Inhalation MeSH
- Asthma * etiology drug therapy classification MeSH
- Budesonide administration & dosage MeSH
- Desensitization, Immunologic methods MeSH
- Adult MeSH
- Ethylamines administration & dosage MeSH
- Drug Combinations MeSH
- Adrenal Cortex Hormones administration & dosage MeSH
- Humans MeSH
- Nitric Oxide diagnostic use MeSH
- Surveys and Questionnaires * MeSH
- Respiratory Hypersensitivity * diagnosis etiology drug therapy MeSH
- Respiratory Function Tests MeSH
- Sickness Impact Profile MeSH
- Maintenance Chemotherapy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Case Reports MeSH
Kazuistika popisuje vývoj onemocnění u 57letého pacienta s diabetem 1. typu a syndromem nerozpoznaných hypoglykemií s četnými hypoglykemickými komaty, u něhož došlo při použití kontinuální monitorace v reálném čase k výraznému snížení výskytu méně závažných i těžkých hypoglykemií, snížení glykemické variability a zlepšení kompenzace. Tento fakt se následně odrazil v celkovém zlepšení kvality života nemocného.
The case report describes the development of disease in a 57-year-old patient with type 1 diabetes and hypoglycemia unawareness, which led to frequent severe hypoglycemia, for whom use of real-time continuous glucose monitoring helped to reduce the incidence of moderate and severe hypoglycemia, reduced high glycemic variability and improved metabolic control. These facts were subsequently reflected in the overall quality of life of the patient.
- Keywords
- kontinuální monitorace glykemie v reálném čase,
- MeSH
- Diabetes Mellitus, Type 1 * blood metabolism prevention & control MeSH
- Hypoglycemia * diagnosis physiopathology prevention & control MeSH
- Middle Aged MeSH
- Humans MeSH
- Blood Glucose Self-Monitoring methods utilization MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Case Reports MeSH
BACKGROUND: The endoscopically implanted duodenal-jejunal bypass liner (DJBL) is an attractive alternative to bariatric surgery for obese diabetic patients. This article aims to study dynamical aspects of the glycaemic profile that may influence DJBL effects. METHODS: Thirty patients underwent DJBL implantation and were followed for 10 months. Continuous glucose monitoring (CGM) was performed before implantation and at month 10. Dynamical variables from CGM were measured: coefficient of variation of glycaemia, mean amplitude of glycaemic excursions (MAGE), detrended fluctuation analysis (DFA), % of time with glycaemia under 6.1 mmol/L (TU6.1), area over 7.8 mmol/L (AO7.8) and time in range. We analysed the correlation between changes in both anthropometric (body mass index, BMI and waist circumference) and metabolic (fasting blood glucose, FBG and HbA1c) variables and dynamical CGM-derived metrics and searched for variables in the basal CGM that could predict successful outcomes. RESULTS: There was a poor correlation between anthropometric and metabolic outcomes. There was a strong correlation between anthropometric changes and changes in glycaemic tonic control (∆BMI-∆TU6.1: rho = - 0.67, P < .01) and between metabolic outcomes and glycaemic phasic control (∆FBG-∆AO7.8: r = .60, P < .01). Basal AO7.8 was a powerful predictor of successful metabolic outcome (0.85 in patients with AO7.8 above the median vs 0.31 in patients with AO7.8 below the median: Chi-squared = 5.67, P = .02). CONCLUSIONS: In our population, anthropometric outcomes of DJBL correlate with improvement in tonic control of glycaemia, while metabolic outcomes correlate preferentially with improvement in phasic control. Assessment of basal phasic control may help in candidate profiling for DJBL implantation.
- MeSH
- Biomarkers analysis MeSH
- Diabetes Mellitus, Type 2 complications surgery MeSH
- Adult MeSH
- Duodenum surgery MeSH
- Glycated Hemoglobin analysis MeSH
- Weight Loss MeSH
- Jejunum surgery MeSH
- Blood Glucose analysis MeSH
- Middle Aged MeSH
- Humans MeSH
- Metabolic Syndrome etiology prevention & control MeSH
- Obesity, Morbid physiopathology surgery MeSH
- Follow-Up Studies MeSH
- Prognosis MeSH
- Aged MeSH
- Gastric Bypass methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
AIM: The aim of this study was to assess relationships between cardiac autonomic regulation after exercise and different types of single-bout exercise of a maximal intensity and of a similar duration. METHODS: The study group consisted of 30 males (23 ± 2 year old), which was separated into three subgroups. Groups A and B performed exercise interventions (continuous or intermittent), while group C represented the control group. Heart rate variability (HRV) was monitored continuously over 30 min after the exercise and consequently during a 6 h period following intervention. Spectral analysis parameters of HRV (total [PT], low- [PLF], high- [PHF] frequency power, LF/HF, and PLF in normalized units [LFnu]) were determined over 5 min intervals. Heart rate recovery (HRR) was also analysed. RESULTS: There were not significant differences between groups A and B for the entire HRV monitoring (P<0.05) or in the relatively expressed HRR. The cardiac autonomic modulation expressed by PT, PLF, and PHF fully recovered in 120 min after exercise, whereas LF/HF and LFnu did not significantly differ (P<0.05) from the control group 60 min earlier. CONCLUSION: Cardiac autonomic recovery after all-out exercise is type non-dependent and sympathovagal balance restores faster than the absolute HRV magnitude.
- MeSH
- Autonomic Nervous System physiology MeSH
- Time Factors MeSH
- Adult MeSH
- Electrocardiography MeSH
- Humans MeSH
- Young Adult MeSH
- Follow-Up Studies MeSH
- Heart Rate physiology MeSH
- Exercise Tolerance physiology MeSH
- Exercise Test methods MeSH
- Healthy Volunteers MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH