Expanding protected area coverage for migratory birds could improve long-term population trends
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NE/T001070/1
RCUK | Natural Environment Research Council (NERC)
NE/T001038/1
RCUK | Natural Environment Research Council (NERC)
PubMed
39979301
PubMed Central
PMC11842860
DOI
10.1038/s41467-025-57019-x
PII: 10.1038/s41467-025-57019-x
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- migrace zvířat * MeSH
- populační dynamika * MeSH
- ptáci * MeSH
- zachování přírodních zdrojů * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Populations of many migratory taxa have been declining over recent decades. Although protected areas are a cornerstone for conservation, their role in protecting migratory species can be incomplete due to the dynamic distributions of these species. Here, we use a pan-European citizen science bird occurrence dataset (EurobirdPortal) with Spatiotemporal Exploratory Modelling to assess how the weekly distributions of 30 passerine and near passerine species overlap with protected areas in Europe and compare this to range adjusted policy protection targets. Thirteen of our 30 species were inadequately covered by protected areas for some, or all, of the European part of their annual cycle under a target based on the 2020 Convention on Biodiversity framework and none were adequately covered under a target based on the 2030 Convention on Biodiversity framework. Species associated with farmland had the lowest percentage of their weekly distribution protected. The percentage of a species' distribution within protected areas was positively correlated with its long-term population trend, even after accounting for confounding factors, suggesting a positive influence of protected areas on long-term trends. This emphasises the positive contribution that an informed expansion of the European protected area system could play for the future conservation of migratory land birds.
British Trust for Ornithology The Nunnery Thetford UK
Catalan Ornithological Institute Barcelona Spain
Conservation Ecology Group Department of Biosciences Durham University Durham UK
Cornell Lab of Ornithology Ithaca NY USA
CREAF Cerdanyola del Vallès Spain
CSIC Cerdanyola del Vallès Spain
Department of Biology Carleton University Ottawa ON Canada
European Bird Census Council Prague Czechia
School of Biological Sciences University of East Anglia NR4 7TU Norwich UK
School of the Environment University of Queensland Brisbane QLD Australia
Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands
Zobrazit více v PubMed
Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, 1996).
Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev.94, 737–752 (2019). PubMed
Somveille, M., Rodrigues, A. S. & Manica, A. Energy efficiency drives the global seasonal distribution of birds. Nat. Ecol. Evol.2, 962–969 (2018). PubMed
Sillett, T. S. & Holmes, R. T. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol.71, 296–308 (2002).
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science344, 1242552 (2014). PubMed
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol.6, e188 (2008). PubMed PMC
Vickery, J. A. et al. The conservation of Afro‐Palaearctic migrants: what we are learning and what we need to know? IBIS165, 717–738 (2023).
United Nations Environment Programme, & Convention on the Conservation of Migratory Species of Wild Animals. Convention on the Conservation of Migratory Species of Wild Animals (CMS): Proceedings of the Second Meeting of the Conference of the Parties. https://wedocs.unep.org/20.500.11822/30718 (1989).
Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol., Evol. Syst.39, 93–113 (2008).
Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett.11, e12435 (2018).
Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv.161, 230–238 (2013).
Barnes, A. E. et al. Rare and declining bird species benefit most from designating protected areas for conservation in the UK. Nat. Ecol. Evol.7, 92–101 (2023). PubMed PMC
Soriano-Redondo, A. et al. Demographic rates reveal the benefits of protected areas in a long-lived migratory bird. Proc. Natl. Acad. Sci. USA120, e2212035120 (2023). PubMed PMC
Convention on Biological Diversity (CBD). COP decision X/2: strategic plan for biodiversity 2011–2020. CBD, Montreal, accessed January 2024. Available from http://www.cbd.int/decision/cop/?id=12268 (2011).
Bingham, H. et al Protected Planet Report 2020: tracking progress towards global targets for protected and conserved areas. Available at: https://livereport.protectedplanet.net/ (2021).
Convention on Biological Diversity (CBD). Zero draft of the post-2020 global biodiversity framework. CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf (2020).
European Commission. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. Communication for the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions, p-25 (2020).
Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ.12, 395–402 (2014).
Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science350, 1255–1258 (2015). PubMed
Di Marco, M., Watson, J. E., Possingham, H. P. & Venter, O. Limitations and trade‐offs in the use of species distribution maps for protected area planning. J. Appl. Ecol.54, 402–411 (2017).
Runge, C. A., Tulloch, A. I., Possingham, H. P., Tulloch, V. J. & Fuller, R. A. Incorporating dynamic distributions into spatial prioritization. Divers. Distrib.22, 332–343 (2016).
Eckert, I., Brown, A., Caron, D., Riva, F. & Pollock, L. J. 30 × 30 biodiversity gains rely on national coordination. Nat. Commun.14, 7113 (2023). PubMed PMC
Rodrigues, A. S. et al. Global gap analysis: priority regions for expanding the global protected-area network. BioScience54, 1092–1100 (2004).
Zeng, Y., Koh, L. P. & Wilcove, D. S. Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Sci. Adv.8, eabl9885 (2022). PubMed PMC
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol.5, 1499–1509 (2021). PubMed
Mogg, S., Fastre, C., Jung, M. & Visconti, P. Targeted expansion of Protected Areas to maximise the persistence of terrestrial mammals. bioRxiv, 608992 (2019).
Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl.20, 2131–2147 (2010). PubMed
Hosmer, D. W. Jr, Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (John Wiley & Sons, 2013).
Locke, H. & Dearden, P. Rethinking protected area categories and the new paradigm. Environ. Conserv.32, 1–10 (2005).
Shafer, C. L. Cautionary thoughts on IUCN protected area management categories V–VI. Glob. Ecol. Conserv.3, 331–348 (2015).
Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol.24, 467–471 (2009). PubMed
Newson, S. E., Bas, Y., Murray, A. & Gillings, S. Potential for coupling the monitoring of bush‐crickets with established large‐scale acoustic monitoring of bats. Methods Ecol. Evol.8, 1051–1062 (2017).
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE4, e8273 (2009). PubMed PMC
Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol.12, e1001891 (2014). PubMed PMC
Venter, O. et al. Bias in protected‐area location and its effects on long‐term aspirations of biodiversity conventions. Conserv. Biol.32, 127–134 (2018). PubMed
Williams, D. R., Rondinini, C. & Tilman, D. Global protected areas seem insufficient to safeguard half of the world’s mammals from human-induced extinction. Proc. Natl Acad. Sci. USA119, e2200118119 (2022). PubMed PMC
Pressey, R. L., Whish, G. L., Barrett, T. W. & Watts, M. E. Effectiveness of protected areas in north-eastern New South Wales: recent trends in six measures. Biol. Conserv.106, 57–69 (2002).
Hein, L. Economic benefits generated by protected areas: the case of the Hoge Veluwe forest, the Netherlands. Ecol. Soc.16, 10.5751/ES-04119-160213 (2011).
Marcacci, G. et al. A roadmap integrating research, policy, and actions to conserve Afro‐Palearctic migratory landbirds at a flyway scale. Conserv. Lett.16, e12933 (2023).
Birds of the World. Edited by S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg. Cornell Laboratory of Ornithology, Ithaca, NY, USA. https://birdsoftheworld.org/bow/home (2022).
Gregory, R. D. & van Strien, A. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol. Sci.9, 3–22 (2010).
Brambilla, M. et al. Sixty years of habitat decline: impact of land-cover changes in northern Italy on the decreasing ortolan bunting Emberiza hortulana. Reg. Environ. Chang.17, 323–333 (2017).
Tagmann-Ioset, A., Schaub, M., Reichlin, T. S., Weisshaupt, N. & Arlettaz, R. Bare ground as a crucial habitat feature for a rare terrestrially foraging farmland bird of Central Europe. Acta Oecol.39, 25–32 (2012).
Hewson, C. M., Thorup, K., Pearce-Higgins, J. W. & Atkinson, P. W. Population decline is linked to migration route in the Common Cuckoo. Nat. Commun.7, 12296 (2016). PubMed PMC
Andreotti, A. et al The need for a flyway approach in defining the onset of prenuptial migration of huntable bird species across Europe. IBIS165, 1447–1453 (2023).
Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun.7, 12747 (2016). PubMed PMC
Devictor, V., Godet, L., Julliard, R., Couvet, D. & Jiguet, F. Can common species benefit from protected areas? Biol. Conserv.139, 29–36 (2007).
Reif, J. & Hanzelka, J. Continent‐wide gradients in open‐habitat insectivorous bird declines track spatial patterns in agricultural intensity across Europe. Glob. Ecol. Biogeogr.29, 1988–2013 (2020).
Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross‐continental similarities in biodiversity change. Ecol. Evol.11, 16647–16660 (2021). PubMed PMC
Gregory, R. D. et al. Drivers of the changing abundance of European birds at two spatial scales. Philos. Trans. R. Soc. B378, 20220198 (2023). PubMed PMC
Taylor, C., Cadenhead, N., Lindenmayer, D. B. & Wintle, B. A. Improving the design of a conservation reserve for a critically endangered species. PLoS ONE12, e0169629 (2017). PubMed PMC
Armsworth, P. R. et al. Is conservation right to go big? Protected area size and conservation return-on-investment. Biol. Conserv.225, 229–236 (2018).
Sanderson, F. J., Wilson, J. D., Franks, S. E. & Buchanan, G. M. Benefits of protected area networks for breeding bird populations and communities. Anim. Conserv.26, 279–289 (2023).
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 3056. 10.1017/9781009325844 (Cambridge University Press, 2022).
Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib.16, 488–495 (2010).
Barbet-Massin, M., Thuiller, W. & Jiguet, F. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Chang. Biol.18, 881–890 (2012).
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature586, 217–227 (2020). PubMed
Johnston, A. et al. Abundance models improve spatial and temporal prioritization of conservation resources. Ecol. Appl.25, 1749–1756 (2015). PubMed
Briedis, M. et al. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc. R. Soc. B286, 20182821 (2019). PubMed PMC
Araújo, M. B., Alagador, D., Cabeza, M., Nogués‐Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett.14, 484–492 (2011). PubMed PMC
Araújo, M. B. Matching species with reserves–uncertainties from using data at different resolutions. Biol. Conserv.118, 533–538 (2004).
Alagador, D., Martins, M. J., Cerdeira, J. O., Cabeza, M. & Araújo, M. B. A probability-based approach to match species with reserves when data are at different resolutions. Biol. Conserv.144, 811–820 (2011).
Newton, I. Population Limitation in Birds (Academic Press, 1998).
Baston, D. exactextractr: Fast Extraction from Raster Datasets using Polygons. R package version 0.8.2, https://CRAN.R-project.org/package=exactextractr (2022).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J.10, 439–446 (2018).
Milanesi, P., Herrando, S., Pla, M., Villero, D. & Keller, V. Towards continental bird distribution models: environmental variables for the second European breeding bird atlas and identification of priorities for further surveys. Vogelwelt137, 53–60 (2017).
Fink, D., Damoulas, T. & Dave, J. Adaptive Spatio-Temporal Exploratory Models: Hemisphere-wide species distributions from massively crowdsourced eBird data. Proc. AAAI Conf. Artif. Intell.27, 1284–1290 (2013).
Dorka, V. Das jahres- und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Der Ornithol. Beob.63, 165–223 (1996).
Zuckerberg, B., Fink, D., La Sorte, F. A., Hochachka, W. M. & Kelling, S. Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers. Distrib.22, 717–730 (2016).
La Sorte, F. A., Horton, K. G., Johnston, A., Fink, D. & Auer, T. Seasonal associations with light pollution trends for nocturnally migrating bird populations. Ecosphere13, e3994 (2022).
EBCC. European Breeding Bird Atlas 2 website. European Bird Census Council. Accessed from: http://ebba2.info (Day/Month/Year) (2022).
UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) [Online], March 2023, Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net (2023).
Hanson, J. O. wdpar: interface to the world database on protected areas. J. Open Source Softw.7, 4594 (2022).
Coetzer, K. L., Witkowski, E. T. & Erasmus, B. F. Reviewing biosphere reserves globally: effective conservation action or bureaucratic label? Biol. Rev.89, 82–104 (2014). PubMed
Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long‐distance migratory birds. Glob. Chang. Biol.23, 1400–1414 (2017). PubMed
Sharps, K., Henderson, I. A. N., Conway, G., Armour‐Chelu, N. & Dolman, P. M. Home‐range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation‐forest landscape. IBIS157, 260–272 (2015).
Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med.15, 361–387 (1996). PubMed
Hewson, C. M. & Noble, D. G. Population trends of breeding birds in British woodlands over a 32‐year period: relationships with food, habitat use and migratory behaviour. IBIS151, 464–486 (2009).
Storchová, L. & Hořák, D. Life‐history characteristics of European birds. Glob. Ecol. Biogeogr.27, 400–406 (2018).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2022).