Genomic Characterization of Cronobacter spp. and Salmonella spp. Strains Isolated From Powdered Infant Formula in Chile

. 2022 ; 13 () : 884721. [epub] 20220602

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35722296

This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018-2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA , and blaCMA . In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6')-Iaa, β-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.

Zobrazit více v PubMed

Achtman M., Wain J., Weill F. X., Nair S., Zhou Z., Sangal V., et al. . (2012). Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 8:e1002776. doi: 10.1371/journal.ppat.1002776, PMID: PubMed DOI PMC

Aldubyan M., Almami I., Benslimane F., Alsonosi A., Forsythe S. (2017). Comparative outer membrane protein analysis of high and low-invasive strains of Cronobacter malonaticus. Front. Microbiol. 8:2268. doi: 10.3389/fmicb.2017.02268, PMID: PubMed DOI PMC

Aly M. A., Domig K. J., Kneifel W., Reimhult E. (2019). Whole genome sequencing-based comparison of food isolates of Cronobacter sakazakii. Front. Microbiol. 10:1464. doi: 10.3389/fmicb.2019.01464, PMID: PubMed DOI PMC

Angulo F., Cahill S., Wachsmuth K., Costarrica M. L., Ben Embarek P. (2008). Powdered infant formula as a source of Salmonella infection in infants. Clin. Infect. Dis. 46, 268–273. doi: 10.1086/524737, PMID: PubMed DOI

Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., et al. . (2009). Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol. 9:223. doi: 10.1186/1471-2180-9-223, PMID: PubMed DOI PMC

Barilli E., Bacci C., StellaVilla Z., Merialdi G., D'Incau M., Brindani F., et al. . (2018). Antimicrobial resistance, biofilm synthesis and virulence genes in Salmonella isolated from pigs bred on intensive farms. Ital. J. Food Saf. 7:7223. doi: 10.4081/ijfs.2018.7223, PMID: PubMed DOI PMC

Biswas A., Staals R., Morales S., Fineran P., Brown C. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. doi: 10.1186/s12864-016-2627-0, PMID: PubMed DOI PMC

Borowiak M., Baumann B., Fischer J., Thomas K., Deneke C., Hammerl J. A., et al. . (2020). Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011–2018) in Germany. Front. Microbiol. 11:80. doi: 10.3389/fmicb.2020.00080, PMID: PubMed DOI PMC

Brouard C., Espié E., Weill F. X., Kérouanton A., Brisabois A., Forgue A. M., et al. . (2007). Two consecutive large outbreaks of Salmonella enterica serotype Agona infections in infants linked to the consumption of powdered infant formula. Pediatr. Infect. Dis. J. 26, 148–152. doi: 10.1097/01.inf.0000253219.06258.23, PMID: PubMed DOI

Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. . (2014). In silico detection and typing of plasmids using plasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. doi: 10.1128/AAC.02412-14, PMID: PubMed DOI PMC

Carrasco E., Morales-Rueda A., García-Gimeno R. M. (2012). Cross-contamination and recontamination by salmonella in foods: a review. Food Res. Int. 45, 545–556. doi: 10.1016/j.foodres.2011.11.004 DOI

Carroll L., Gaballa A., Guldimann C., Sullivan G., Henderson L., Wiedmann M. (2019). Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio 10, e00853–e00919. doi: 10.1128/mBio.00853-19, PMID: PubMed DOI PMC

Carroll L. M., Wiedmann M., den Bakker H., Siler J., Warchocki S., Kent D., et al. . (2017). Whole-genome sequencing of drug-resistant Salmonella enterica isolates from dairy cattle and humans in New York and Washington States reveals source and geographic associations. Appl. Environ. Microbiol. 83, e00140–e00217. doi: 10.1128/AEM.00140-17, PMID: PubMed DOI PMC

Caubilla-Barron J., Forsythe S. (2007). Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J. Food Prot. 70, 2111–2117. doi: 10.4315/0362-028x-70.9.2111 PubMed DOI

Cha M. H., Woo G. J., Lee W., Kim S. H., Woo J. H., Kim J., et al. . (2020). Emergence of transferable mcr-9 gene-carrying colistin-resistant Salmonella enterica Dessau ST14 isolated from retail chicken meat in Korea. Foodborne Pathog. Dis. 17, 720–727. doi: 10.1089/fpd.2020.2810, PMID: PubMed DOI PMC

Cheng R. A., Eade C. R., Wiedmann M. (2019). Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of Nontyphoidal Salmonella as a foodborne pathogen. Front. Microbiol. 10:1368. doi: 10.3389/fmicb.2019.01368, PMID: PubMed DOI PMC

Chon J., Song K., Kim S., Hyeon J., Seo K. (2012). Isolation and characterization of Cronobacter from desiccated foods in Korea. J. Food Sci. 77, 354–358. doi: 10.1111/j.1750-3841.2012.02750.x PubMed DOI

CLSI . (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th Edn. Wayne, PA: CLSI.

Codex Alimentarius Commission (2007). Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. CXS 72-1981 Revised 2007, 119–11.

Cordier J.-L. (2008). “Chapter 6: Production of powdered infant formulae and microbiological control measures,” in Enterobacter sakazakii. eds. Farber J., Forsythe S. J. (Washington, D.C.: ASM Press; ).

Costa P. V., Vasconcellos L., Forsythe S. J., Brandão M. L. L. (2021). Diversity of Cronobacter genus isolated between 1970 and 2019 on the American continent and genotyped using multi-locus sequence typing. FEMS Microbiol. Lett. 368, 1–9. doi: 10.1093/femsle/fnab027, PMID: PubMed DOI

Craven H. H., McAuley C. M., Duffy L. L., Fegan N. (2010). Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the non-processing and processing environments of five milk powder factories. J. Appl. Microbiol. 109, 1044–1052. doi: 10.1111/j.1365-2672.2010.04733.x, PMID: PubMed DOI

Cruz A., Xicohtencatl J., Gonzalez B., Bobadilla M., Eslava C., Rosas I. (2011). Virulence traits in Cronobacter species isolated from different sources. Can. J. Microbiol. 57, 735–744. doi: 10.1139/w11-063 PubMed DOI

Csorba C., Pajić M., Blagojević B., Forsythe S., Radinović M., Velebit B. (2021). Prevalence, characterization, and antibiotic susceptibility of Cronobacter spp. in a milk powder processing environment: the first reported case in Serbia. Food Sci. Nutr. 10, 554–563. doi: 10.1002/fsn3.2681, PMID: PubMed DOI PMC

de Frutos M., López-Urrutia L., Berbel C., Allue M., Herrera S., Azcona J. M., et al. . (2018). Brote de Salmonella Typhimurium monofásica asociada al consumo de carne asada de cerdo [Monophasic Salmonella Typhimurium outbreak due to the consumption of roast pork meat]. Rev. Esp. Quimioter. 31, 156–159. PubMed PMC

de Toro M., Sáenz Y., Cercenado E., Rojo-Bezares B., García-Campello M., Undabeitia E., et al. . (2011). Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. Int. Microbiol. 14, 173–181. doi: 10.2436/20.1501.01.146, PMID: PubMed DOI

de Toro M., Seral C., Rojo-Bezares B., Torres C., Castillo F. J., Sáenz Y. (2014). Resistencia a antibióticos y factores de virulencia en aislados clínicos de Salmonella enterica. Enferm. Infecc. Microbiol. Clin. 32, 4–10. doi: 10.1016/j.eimc.2013.03.006, PMID: PubMed DOI

Deter H. S., Jensen R. V., Mather W. H., Butzin N. C. (2017). Mechanisms for differential protein production in toxin–antitoxin systems. Toxins 9:211. doi: 10.3390/toxins9070211, PMID: PubMed DOI PMC

Falagas M., Athanasaki F., Voulgaris G., Triarides N., Vardakas K. (2019). Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int. J. Antimicrob. Agents 53, 22–28. doi: 10.1016/j.ijantimicag.2018.09.013, PMID: PubMed DOI

FAO/WHO (2004). Enterobacter sakazakii and Other Microorganisms in Powdered Infant Formula: Meeting Report. Microbiological Risk Assessment. Series No. 6 Geneva: WHO.

FAO/WHO (2006). Enterobacter Sakazakii and Salmonella Powdered Infant Formula. Microbiological Risk Assessment. Series No. 10. Rome: FAO

FAO/WHO (2008). Enterobacter sakazakii and other microorganisms in powdered follow-up formula. Meeting report. Microbiological Risk Assessment. Series No. 15. Rome: FAO.

FDA (2019). Investigations Operation Manual. Available at: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-references/investigations-operations-manual (Accessed March, 2021).

Fei P., Jiang Y., Feng J., Forsythe S. J., Li R., Zhou Y., et al. . (2017). Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments. Front. Microbiol. 8:316. doi: 10.3389/fmicb.2017.00316, PMID: PubMed DOI PMC

Fei P., Man C., Lou B., Forsythe S., Chai Y., Li R., et al. . (2015). Genotyping and source tracking of the Cronobacter sakazakii and C. malonaticus isolated from powdered infant formula and an infant formula production factory in China. Appl. Environ. Microbiol. 81, 5430–5439. doi: 10.1128/AEM.01390-15, PMID: PubMed DOI PMC

Ferri M., Ranucci E., Romagnoli P., Giaccone V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57, 2857–2876. doi: 10.1080/10408398.2015.1077192 PubMed DOI

Finkelstein S., Negrete F., Jang H., Gangiredla J., Mammel M., Patel I. R., et al. . (2019). Prevalence, distribution, and phylogeny of type two toxin-antitoxin genes possessed by Cronobacter species where C. sakazakii homologs follow sequence type lineages. Microorganisms 7:554. doi: 10.3390/microorganisms7110554, PMID: PubMed DOI PMC

Flores J. P., Arvizu S., Silva J., Fernández-Escartín E. (2011). Two cases of hemorrhagic diarrhea caused by Cronobacter sakazakii in hospitalized nursing infants associated with the consumption of powdered infant formula. J. Food Prot. 74, 2177–2181. doi: 10.4315/0362-028X.JFP-11-257, PMID: PubMed DOI

Forsythe S. J. (2018). Updates on the Cronobacter genus. Annu. Rev. Food Sci. Technol. 9, 23–44. doi: 10.1146/annurev-food-030117-012246, PMID: PubMed DOI

Franco A. A., Kothary M., Gopinath G., Jarvis K., Grim C. J., Hu L., et al. . (2011). Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect. Immun. 79, 1578–1587. doi: 10.1128/IAI.01165-10, PMID: PubMed DOI PMC

Garallah E. T., Al-Jubori S. (2020). Molecular detection of glpT and uhpT genes as fosfomycin pathways in UTI infection patients. Gene Rep. 21:100930. doi: 10.1016/j.genrep.2020.100930 DOI

Gordillo Altamirano F. L., Barr J. J. (2019). Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32, e00066–e00068. doi: 10.1128/CMR.00066-18, PMID: PubMed DOI PMC

Guerin E., Shkoporov A., Stockdale S. R., Clooney A. G., Ryan F. J., Sutton T., et al. . (2018). Biology and taxonomy of crAss-like bacteriophages, the Most abundant virus in the human gut. Cell Host Microbe 24, 653.e6–664.e6. doi: 10.1016/j.chom.2018, PMID: PubMed DOI

Güerri M. L., Aladueña A., Echeíta A., Rotger R. (2004). Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate. Int. J. Antimicrob. Agents 24, 327–333. doi: 10.1016/j.ijantimicag.2004.04.009, PMID: PubMed DOI

Holý O., Cruz-Cordova A., Xicohtencatl-Cortés J., Hochel I., Parra-Flores J., Petrzelova J., et al. . (2019). Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb. Pathog. 127, 250–256. doi: 10.1016/j.micpath.2018.12.011, PMID: PubMed DOI

Holý O., Parra-Flores J., Lepuschitz S., Alarcón-Lavín M. P., Cruz-Córdova A., Xicohtencatl-Cortes J., et al. . (2021). Molecular characterization of Cronobacter sakazakii strains isolated from powdered milk. Foods 10:20. doi: 10.3390/foods10010020, PMID: PubMed DOI PMC

Hu L., Cao G., Brown E. W., Allard M., Ma L., Zhang G. (2021). Whole genome sequencing and protein structure analyses of target genes for the detection of Salmonella. Sci. Rep. 11:20887. doi: 10.1038/s41598-021-00224-7, PMID: PubMed DOI PMC

Huehn S., La Ragione R. M., Anjum M., Saunders M., Woodward M. J., Bunge C., et al. . (2010). Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 7, 523–535. doi: 10.1089/fpd.2009.0447, PMID: PubMed DOI

Ingram P., Inglis T., Vanzetti T., Henderson B., Harnett G., Murray R. (2011). Comparison of methods for AmpC β-lactamase detection in Enterobacteriaceae. J. Med. Microbiol. 60, 715–721. doi: 10.1099/jmm.0.029140-0., PMID: PubMed DOI

Instituto Nacional de Normalización (2002). Chile. Norma Chilena NCh 2675 de detección de Salmonella. Available at: https://ecommerce.inn.cl/nch2675200244470 (Accessed October 10, 2020).

International Standards for Organization (ISO) (2017). ISO 22964:2017: microbiology of the food chain—horizontal method for the detection of Cronobacter spp. international standards Organization. Available at: https://www.iso.org/standard/64708.htm PubMed

Iversen C., Forsythe S. (2004). Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 21, 771–777. doi: 10.1016/j.fm.2004.01.009 DOI

Iversen C., Mullane N., Mc Cardell B., Tall B. D., Lehner A., Fanning S., et al. . (2008). Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. Nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58, 1442–1447. doi: 10.1099/ijs.0.65577-0, PMID: PubMed DOI

Jain P., Sudhanthirakodi S., Chowdhury G., Joshi S., Anandan S., Ray U., et al. . (2018). Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium clinical and environmental isolates from India. PLoS One 13:e0207954. doi: 10.1371/journal.pone.0207954, PMID: PubMed DOI PMC

Jang H., Chase H. R., Gangiredla J., Grim C. J., Patel I. R., Kothary M. H., et al. . (2020). Analysis of the molecular diversity among Cronobacter species isolated from filth flies using targeted PCR, pan genomic DNA microarray, and whole genome sequencing analyses. Front. Microbiol. 11:561204. doi: 10.3389/fmicb.2020.561204, PMID: PubMed DOI PMC

Jia B., Raphenya A. R., Alcock B., Waglechner N., Guo P., Tsang K., et al. . (2017). CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573. doi: 10.1093/nar/gkw1004, PMID: PubMed DOI PMC

Johansson M., Bortolaia V., Tansirichaiya S., Aarestrup F. M., Roberts A. P., Petersen T. N. (2021). Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 76, 101–109. doi: 10.1093/jac/dkaa390, PMID: PubMed DOI PMC

Jones G., Pardos de la Gandara M., Herrera-Leon L., Herrera-Leon S., Varela Martinez C., Hureaux-Roy R., et al. . (2019). Outbreak of Salmonella enterica serotype Poona in infants linked to persistent Salmonella contamination in an infant formula manufacturing facility, France, august 2018 to February 2019. Euro Surveill. 24:1900161. doi: 10.2807/1560-7917.ES.2019.24.13.1900161, PMID: PubMed DOI PMC

Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M., Forsythe S. (2012). Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. Geneomoespecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol. 62, 1277–1283. doi: 10.1099/ijs.0.032292-0, PMID: PubMed DOI

Joseph S., Forsythe S. J. (2011). Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg. Infect. Dis. 17, 1713–1715. doi: 10.3201/eid1709.110260, PMID: PubMed DOI PMC

Joseph S., Forsythe S. (2012). Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Microbiol. 3:397. doi: 10.3389/fmicb.2012.00397, PMID: PubMed DOI PMC

Jourdan-da Silva N., Fabre L., Robinson E., Fournet N., Nisavanh A., Bruyand M., et al. . (2018). Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Euro Surveill. 23, 17–00852. doi: 10.2807/1560-7917.ES.2018.23.2.17-00852, PMID: PubMed DOI PMC

Jünemann S., Sedlazeck F. J., Prior K., Albersmeier A., John U., Kalinowski J., et al. . (2013). Updating benchtop sequencing performance comparison. Nat. Biotechnol. 31, 294–296. doi: 10.1038/nbt.2522, PMID: PubMed DOI

Khezri A., Avershina E., Ahmad R. (2021). Plasmid identification and plasmid-mediated antimicrobial gene detection in norwegian isolates. Microorganisms 9:52. doi: 10.3390/microorganisms9010052, PMID: PubMed DOI PMC

Kieffer N., Royer G., Decousser J. W., Bourrel A. S., Palmieri M., Ortiz De La Rosa J. M., et al. . (2019). Mcr-9, an inducible gene encoding an acquired phosphoethano-lamine transferase in Escherichia coli, and its origin. Antimicrob. Agents Chemother. 63, e00965–e001019. doi: 10.1128/AAC.00965-19, PMID: PubMed DOI PMC

Kim K., Jang S., Kim S., Park J., Heu S., Ryu S. (2008). Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. Int. J. Food Microbiol. 122, 196–203. doi: 10.1016/j.ijfoodmicro.2007.11.072, PMID: PubMed DOI

Kim K., Kim K., Choi J., Lim-Jeong A., Lee J., Hwang S., et al. . (2010). Outer membrane proteins a (OmpA) and x (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl. Environ. Microbiol. 76, 5188–5198. doi: 10.1128/AEM.02498-09, PMID: PubMed DOI PMC

Lachowska M., Izdebski R., Urbanowicz P., Żabicka D., Królak-Olejnik B. (2021). Infection of Cronobacter sakazakii ST1 producing SHV-12 in a premature infant born from triplet pregnancy. Microorganisms 9:1878. doi: 10.3390/microorganisms9091878, PMID: PubMed DOI PMC

Lange S., Alkhnbashi O., Rose D., Will S., Backofen R. (2013). CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res. 41, 8034–8044. doi: 10.1093/nar/gkt606, PMID: PubMed DOI PMC

Lee Y.-D., Park J., Chang H. (2012). Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 24, 225–230. doi: 10.1016/j.foodcont.2011.09.023 DOI

Lehner A., Tall B. D., Fanning S., Srikumar S. (2018). Cronobacter spp.—opportunistic foodborne pathogens: an update on evolution, osmotic adaptation and pathogenesis. Curr. Clin. Microbiol. Rep. 5, 97–105. doi: 10.1007/s40588-018-0089-7 DOI

Leopold S., Goering R., Witten A., Harmsen D., Mellmann A. (2014). Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J. Clin. Microbiol. 52, 2365–2370. doi: 10.1128/JCM.00262-14, PMID: PubMed DOI PMC

Lepuschitz S., Ruppitsch W., Pekard-Amenitsch S., Forsythe S. J., Cormican M., Mach R. L., et al. . (2019). Multicenter study of Cronobacter sakazakii infections in humans, Europe, 2017. Emerg. Infect. Dis. 25, 515–522. doi: 10.3201/eid2503.181652, PMID: PubMed DOI PMC

Lepuschitz S., Sorschag S., Springer B., Allerberger F., Ruppitsch W. (2017). Draft genome sequence of carbapenemase-producing Serratia marcescens isolated from a patient with chronic obstructive pulmonary disease. Genome Announc. 5, e01288–e01317. doi: 10.1128/genomeA.01288-1 PubMed DOI PMC

Lepuschitz S., Weinmaier T., Mrazek K., Beisken S., Weinberger J., Posch A. E. (2020). Analytical performance validation of next-generation sequencing based clinical microbiology assays using a K-mer analysis workflow. Front. Microbiol. 11:1883. doi: 10.3389/fmicb.2020.01883, PMID: PubMed DOI PMC

Lesnick M. L., Reiner N. E., Fierer J., Guiney D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39, 1464–1470. doi: 10.1046/j.1365-2958.2001.02360.x, PMID: PubMed DOI

Lou L., Zhang P., Piao R., Wang Y. (2019). Salmonella Pathogenicity Island 1 (SPI-1) and its complex regulatory network. Front. Cell. Infect. Microbiol. 9:270. doi: 10.3389/fcimb.2019.00270, PMID: PubMed DOI PMC

Louwen R., Staals R. H., Endtz H. P., van Baarlen P., van der Oost J. (2014). The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78, 74–88. doi: 10.1128/MMBR.00039-13, PMID: PubMed DOI PMC

Makarova K. S., Wolf Y. I., Alkhnbashi O. S., Costa F., Shah S. A., Saunders S. J., et al. . (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736. doi: 10.1038/nrmicro3569, PMID: PubMed DOI PMC

Mambu J., Barilleau E., Fragnet-Trapp L., Le Vern Y., Olivier M., Sadrin G., et al. . (2020). Rck of Salmonella Typhimurium delays the host cell cycle to facilitate bacterial invasion. Front. Cell. Infect. Microbiol. 10:586934. doi: 10.3389/fcimb.2020.586934, PMID: PubMed DOI PMC

Mange J. P., Stephan R., Borel L., Wild P., Kim K. S., Pospischil A., et al. . (2006). Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol. 6, 58–68. doi: 10.1186/1471-2180-6-58, PMID: PubMed DOI PMC

Mare A., Man A., Toma F., Ciurea C. N., Coşeriu R. L., Vintilă C., et al. . (2020). Hemolysin-producing strains among diarrheagenic Escherichia coli isolated from children under 2 years old with diarrheal disease. Pathogens 9:1022. doi: 10.3390/pathogens9121022, PMID: PubMed DOI PMC

Marraffini L. A. (2013). CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. PLoS Pathog. 9:e1003765. doi: 10.1371/journal.ppat.1003765, PMID: PubMed DOI PMC

Mazzantini D., Fonnesu R., Celandroni F., Calvigioni M., Vecchione A., Mrusek D., et al. . (2020). GTP-dependent FlhF homodimer supports secretion of a hemolysin in Bacillus cereus. Front. Microbiol. 11:879. doi: 10.3389/fmicb.2020.00879, PMID: PubMed DOI PMC

Mezal E. H., Sabol A., Khan M. A., Ali N., Stefanova R., Khan A. A. (2014). Isolation and molecular characterization of salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol. 38, 67–74. doi: 10.1016/j.fm.2013.08.003, PMID: PubMed DOI

Molloy C., Cagney C., O’Brien S., Iversen C., Fanning S., Duffy G. (2009). Surveillance and characterization by pulsed-field gel electrophoresis of Cronobacter spp in farming and domestic environments, food production animals and retails foods. Int. J. Food Microbiol. 136, 198–203. doi: 10.1016/j.ijfoodmicro.2009.07.007, PMID: PubMed DOI

Monte D. F. M., Sellera F. P., Lopes R., Keelara S., Landgraf M., Greene S., et al. . (2020). Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States. PLoS One 15:e0240978. doi: 10.1371/journal.pone.0240978, PMID: PubMed DOI PMC

Mossong J., Marques P., Ragimbeau C., Huberty-Krau P., Losch S., Meyer G., et al. . (2007). Outbreaks of monophasic Salmonella enterica serovar 4, [5],12: i: - in Luxembourg, 2006. Euro Surveill. 12, E11–E12. doi: 10.2807/esm.12.06.00719-en, PMID: PubMed DOI

Müller A., Hächler H., Stephan R., Lehner A. (2014). Presence of AmpC beta-lactamases, CSA-1, CSA-2, CMA-1, and CMA-2 conferring an unusual resistance phenotype in Cronobacter sakazakii and Cronobacter malonaticus. Microb. Drug Resist. 20, 275–280. doi: 10.1089/mdr.2013.0188, PMID: PubMed DOI

Murugkar H. V., Rahman H., Dutta P. K. (2003). Distribution of virulence genes in Salmonella serovars isolated from man & animals. Indian J. Med. Res. 117, 66–70. PubMed

Nayak R., Stewart T., Wang R. F., Lin J., Cerniglia C. E., Kenney P. B. (2004). Genetic diversity and virulence gene determinants of antibiotic-resistant Salmonella isolated from preharvest Turkey production sources. Int. J. Food Microbiol. 91, 51–62. doi: 10.1016/S0168-1605(03)00330-1, PMID: PubMed DOI

Ogrodzki P., Forsythe S. (2015). Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genomics 16:758. doi: 10.1186/s12864-015-1960-z, PMID: PubMed DOI PMC

Ogrodzki P., Forsythe S. (2016). CRISPR–cas loci profiling of Cronobacter sakazakii pathovars. Future Microbiol. 11, 1507–1519. doi: 10.2217/fmb-2016-0070 PubMed DOI

Panzenhagen P. H. N., Paul N. C., Conte C. A., Costa R. G., Rodrigues D. P., Shah D. H. (2018). Genetically distinct lineages of Salmonella Typhimurium ST313 and ST19 are present in Brazil. Int. J. Med. Microbiol. 308, 306–316. doi: 10.1016/j.ijmm.2018.01.005, PMID: PubMed DOI

Parra-Flores J., Cruz-Córdova A., Acuña S., Riffo-Sepúlveda F., Maury-Sintjago E., Rodriguez-Fernández A., et al. . (2021a). “Cronobacter spp. in milk,” in Reference Module in Food Science. eds. McSweeney P. L. H., McNamara J. P. (Amsterdam, Netherlands: Elsevier; ), 1–9.

Parra-Flores J., Aguirre J., Juneja V., Jackson E., Cruz-Córdova A., Silva-Sanchez J., et al. . (2018a). Virulence and antibiotic resistance profiles of Cronobacter sakazakii and Enterobacter spp. involved in the diarrheic hemorrhagic outbreak in Mexico. Front. Microbiol. 9:2206. doi: 10.3389/fmicb.2018.02206, PMID: PubMed DOI PMC

Parra-Flores J., Cerda-Leal F., Contreras A., Valenzuela-Riffo N., Rodriguez A., Aguirre J. (2018b). Cronobacter sakazakii and microbiological parameters in dairy formulas associated with a food alert in Chile. Front. Microbiol. 9:1708. doi: 10.3389/fmicb.2018.01708., PMID: PubMed DOI PMC

Parra-Flores J., Holý O., Riffo F., Lepuschitz S., Maury-Sintjago E., Rodríguez-Fernández A., et al. . (2021b). Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing. Front. Microbiol. 12:694922. doi: 10.3389/fmicb.2021.694922, PMID: PubMed DOI PMC

Parra-Flores J., Maury-Sintjago E., Rodríguez-Fernández A., Acuña S., Cerda F., Aguirre J., et al. . (2020). Microbiological quality of powdered infant formula in Latin America. J. Food Prot. 83, 534–541. doi: 10.4315/0362-028X.JFP-19-399, PMID: PubMed DOI

Podolak R., Black D. G. (2017). “Introduction and overview,” in In Control of Salmonella and Other Bacterial Pathogens in Low-Moisture Foods. 1st Edn. eds. Podolak R., Black D. G. (West Sussex, UK: John Wiley and Sons; ), 1–27.

Ramsamy Y., Mlisana K. P., Allam M., Amoako D. G., Abia A. L. K., Ismail A., et al. . (2020). Genomic analysis of carbapenemase-producing extensively drug-resistant Klebsiella pneumoniae isolates reveals the horizontal spread of p18-43_01 plasmid encoding blaNDM-1 in South Africa. Microorganisms 8:137. doi: 10.3390/microorganisms8010137, PMID: PubMed DOI PMC

Richter L., du Plessis E. M., Duvenage S., Korsten L. (2020). Occurrence, phenotypic and molecular characterization of extended-Spectrum- and AmpC- β-lactamase producing Enterobacteriaceae isolated from selected commercial spinach supply chains in South Africa. Front. Microbiol. 11:638. doi: 10.3389/fmicb.2020.00638, PMID: PubMed DOI PMC

Severi E., Hood D. W., Thomas G. H. (2007). Sialic acid utilization by bacterial pathogens. Microbiology 153, 2817–2822. doi: 10.1099/mic.0.2007/009480-0, PMID: PubMed DOI

Shi L., Liang Q., Zhan Z., Feng J., Zhao Y., Chen Y., et al. . (2018). Co-occurrence of 3 different resistance plasmids in a multi-drug resistant Cronobacter sakazakii isolate causing neonatal infections. Virulence 9, 110–120. doi: 10.1080/21505594.2017.1356537, PMID: PubMed DOI PMC

Silver L. L. (2017). Fosfomycin: mechanism and resistance. Cold Spring Harb. Perspect. Med. 7:a025262. doi: 10.1101/cshperspect.a025262, PMID: PubMed DOI PMC

Sohanpal B. K., Friar S., Roobol J., Plumbridge J. A., Blomfield I. C. (2007). Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Mol. Microbiol. 63, 1223–1236. doi: 10.1111/j.1365-2958.2006.05583.x, PMID: PubMed DOI

Sonbol H., Joseph S., McAuley C., Craven H., Forsythe S. (2013). Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Int. Dairy J. 30, 1–7. doi: 10.1016/j.idairyj.2012.11.004 DOI

Stephan R., Grim C., Gopinath G., Mammel M., Sathyamoorthy V., Trach L., et al. . (2014). Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 64, 3402–3410. doi: 10.1099/ijs.0.059832-0, PMID: PubMed DOI PMC

Thung T. Y., Radu S., Mahyudin N. A., Rukayadi Y., Zakaria Z., Mazlan N., et al. . (2018). Prevalence, virulence genes and antimicrobial resistance profiles of Salmonella Serovars from retail beef in Selangor, Malaysia. Front. Microbiol. 8:2697. doi: 10.3389/fmicb.2017.02697, PMID: PubMed DOI PMC

U.S FDA (2022). FDA Investigation of Cronobacter and Salmonella Complaints: Powdered Infant Formula (February 2022). Available at: https://www.fda.gov/food/outbreaks-foodborne-illness/fda-investigation-cronobacter-and-salmonella-complaints-powdered-infant-formula-february-2022 (Accessed February 21, 2022).

Uelze L., Borowiak M., Deneke C., Szabó I., Fischer J., Tausch S. H., et al. . (2020). Performance and accuracy of four open-source tools for in silico serotyping of salmonella spp. based on whole-genome short-read sequencing data. Appl. Environ. Microbiol. 86, e02265–e02319. doi: 10.1128/AEM.02265-19, PMID: PubMed DOI PMC

Walling L. R., Butler J. S. (2019). Toxins targeting transfer RNAs: translation inhibition by bacterial toxin–antitoxin systems. Wiley Interdiscip. Rev. RNA 10:e1506. doi: 10.1002/wrna.1506, PMID: PubMed DOI PMC

Wang X., Biswas S., Paudyal N., Pan H., Li X., Fang W., et al. . (2019). Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front. Microbiol. 10:985. doi: 10.3389/fmicb.2019.00985, PMID: PubMed DOI PMC

Wang X., Wang Y., Ling N., Shen Y., Zhang D., Liu D., et al. . (2021). Effects of tolC on tolerance to bile salts and biofilm formation in Cronobacter malonaticus. J. Dairy Sci. 104, 9521–9531. doi: 10.3168/jds.2021-20128, PMID: PubMed DOI

Wang L., Zhu W., Lu G., Wu P., Wei Y., Su Y., et al. . (2021). In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data. Int. J. Food Microbiol. 358:109405. doi: 10.1016/j.ijfoodmicro.2021.109405, PMID: PubMed DOI

Wei Z., Xu X., Yan M., Chang H., Li Y., Kan B., et al. . (2019). Salmonella Typhimurium and salmonella Enteritidis infections in sporadic diarrhea in children: source tracing and resistance to third-generation Cephalosporins and ciprofloxacin. Foodborne Pathog. Dis. 16, 244–255. doi: 10.1089/fpd.2018.2557, PMID: PubMed DOI

Xiang Y., Li F., Dong N., Tian S., Zhang H., Du X., et al. . (2020). Investigation of a salmonellosis outbreak caused by multidrug resistant salmonella Typhimurium in China. Front. Microbiol. 11:801. doi: 10.3389/fmicb.2020.00801, PMID: PubMed DOI PMC

Zeng H., Lei T., He W., Zhang J., Liang B., Li C., et al. . (2018). Novel multidrug resistant Cronobacter sakazakii causing meningitis in neonate, China, 2015. Emerg. Infect. Dis. 24, 2121–2124. doi: 10.3201/eid2411.180718, PMID: PubMed DOI PMC

Zeng H., Zhang J., Li C., Xie T., Ling N., Wu Q., et al. . (2017). The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci. Rep. 7:40206. doi: 10.1038/srep46783, PMID: PubMed DOI PMC

Zhang S., Yin Y., Jones M. B., Zhang Z., Deatherage Kaiser B. L., Dinsmore B. A., et al. . (2015). Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53, 1685–1692. doi: 10.1128/JCM.00323-15, PMID: PubMed DOI PMC

Zhang F., Zhao S., Ren C., Zhu Y., Lai Y., Zhou F., et al. . (2018). CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun. Biol. 1:180. doi: 10.1038/s42003-018-0184-6, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...