Genomic Characterization of Cronobacter spp. and Salmonella spp. Strains Isolated From Powdered Infant Formula in Chile
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35722296
PubMed Central
PMC9201451
DOI
10.3389/fmicb.2022.884721
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas, Cronobacter malonaticus, Cronobacter sakazakii, Salmonella Typhimurium, powdered infant formula, resistance genes, virulence, whole-genome sequencing,
- Publikační typ
- časopisecké články MeSH
This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018-2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA , and blaCMA . In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6')-Iaa, β-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.
Department of Food Engineering Universidad del Bío Bío Chillán Chile
Department of Nutrition and Food Science Texas A and M University College Station TX United States
Department of Nutrition and Public Health Universidad del Bío Bío Chillán Chile
Food Quality Testing and Certification Laboratory Universidad del Bío Bío Chillán Chile
Foodmicrobe com Nottingham United Kingdom
Science and Research Centre Faculty of Health Sciences Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Achtman M., Wain J., Weill F. X., Nair S., Zhou Z., Sangal V., et al. (2012). Multilocus sequence typing as a replacement for serotyping in PubMed DOI PMC
Aldubyan M., Almami I., Benslimane F., Alsonosi A., Forsythe S. (2017). Comparative outer membrane protein analysis of high and low-invasive strains of PubMed DOI PMC
Aly M. A., Domig K. J., Kneifel W., Reimhult E. (2019). Whole genome sequencing-based comparison of food isolates of PubMed DOI PMC
Angulo F., Cahill S., Wachsmuth K., Costarrica M. L., Ben Embarek P. (2008). Powdered infant formula as a source of PubMed DOI
Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., et al. (2009). Multilocus sequence typing of PubMed DOI PMC
Barilli E., Bacci C., StellaVilla Z., Merialdi G., D'Incau M., Brindani F., et al. (2018). Antimicrobial resistance, biofilm synthesis and virulence genes in PubMed DOI PMC
Biswas A., Staals R., Morales S., Fineran P., Brown C. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. doi: 10.1186/s12864-016-2627-0, PMID: PubMed DOI PMC
Borowiak M., Baumann B., Fischer J., Thomas K., Deneke C., Hammerl J. A., et al. (2020). Development of a novel PubMed DOI PMC
Brouard C., Espié E., Weill F. X., Kérouanton A., Brisabois A., Forgue A. M., et al. (2007). Two consecutive large outbreaks of PubMed DOI
Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. (2014). In silico detection and typing of plasmids using plasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. doi: 10.1128/AAC.02412-14, PMID: PubMed DOI PMC
Carrasco E., Morales-Rueda A., García-Gimeno R. M. (2012). Cross-contamination and recontamination by DOI
Carroll L., Gaballa A., Guldimann C., Sullivan G., Henderson L., Wiedmann M. (2019). Identification of novel mobilized colistin resistance gene PubMed DOI PMC
Carroll L. M., Wiedmann M., den Bakker H., Siler J., Warchocki S., Kent D., et al. (2017). Whole-genome sequencing of drug-resistant PubMed DOI PMC
Caubilla-Barron J., Forsythe S. (2007). Dry stress and survival time of PubMed DOI
Cha M. H., Woo G. J., Lee W., Kim S. H., Woo J. H., Kim J., et al. (2020). Emergence of transferable mcr-9 gene-carrying colistin-resistant PubMed DOI PMC
Cheng R. A., Eade C. R., Wiedmann M. (2019). Embracing diversity: differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of Nontyphoidal PubMed DOI PMC
Chon J., Song K., Kim S., Hyeon J., Seo K. (2012). Isolation and characterization of PubMed DOI
CLSI . (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th Edn. Wayne, PA: CLSI.
Codex Alimentarius Commission (2007). Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. CXS 72-1981 Revised 2007, 119–11.
Cordier J.-L. (2008). “Chapter 6: Production of powdered infant formulae and microbiological control measures,” in Enterobacter sakazakii. eds. Farber J., Forsythe S. J. (Washington, D.C.: ASM Press; ).
Costa P. V., Vasconcellos L., Forsythe S. J., Brandão M. L. L. (2021). Diversity of PubMed DOI
Craven H. H., McAuley C. M., Duffy L. L., Fegan N. (2010). Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the non-processing and processing environments of five milk powder factories. J. Appl. Microbiol. 109, 1044–1052. doi: 10.1111/j.1365-2672.2010.04733.x, PMID: PubMed DOI
Cruz A., Xicohtencatl J., Gonzalez B., Bobadilla M., Eslava C., Rosas I. (2011). Virulence traits in PubMed DOI
Csorba C., Pajić M., Blagojević B., Forsythe S., Radinović M., Velebit B. (2021). Prevalence, characterization, and antibiotic susceptibility of PubMed DOI PMC
de Frutos M., López-Urrutia L., Berbel C., Allue M., Herrera S., Azcona J. M., et al. (2018). Brote de PubMed PMC
de Toro M., Sáenz Y., Cercenado E., Rojo-Bezares B., García-Campello M., Undabeitia E., et al. (2011). Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in PubMed DOI
de Toro M., Seral C., Rojo-Bezares B., Torres C., Castillo F. J., Sáenz Y. (2014). Resistencia a antibióticos y factores de virulencia en aislados clínicos de PubMed DOI
Deter H. S., Jensen R. V., Mather W. H., Butzin N. C. (2017). Mechanisms for differential protein production in toxin–antitoxin systems. Toxins 9:211. doi: 10.3390/toxins9070211, PMID: PubMed DOI PMC
Falagas M., Athanasaki F., Voulgaris G., Triarides N., Vardakas K. (2019). Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int. J. Antimicrob. Agents 53, 22–28. doi: 10.1016/j.ijantimicag.2018.09.013, PMID: PubMed DOI
FAO/WHO (2004).
FAO/WHO (2006).
FAO/WHO (2008). Enterobacter sakazakii and other microorganisms in powdered follow-up formula. Meeting report. Microbiological Risk Assessment. Series No. 15. Rome: FAO.
FDA (2019). Investigations Operation Manual. Available at: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-references/investigations-operations-manual (Accessed March, 2021).
Fei P., Jiang Y., Feng J., Forsythe S. J., Li R., Zhou Y., et al. (2017). Antibiotic and desiccation resistance of PubMed DOI PMC
Fei P., Man C., Lou B., Forsythe S., Chai Y., Li R., et al. (2015). Genotyping and source tracking of the PubMed DOI PMC
Ferri M., Ranucci E., Romagnoli P., Giaccone V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57, 2857–2876. doi: 10.1080/10408398.2015.1077192 PubMed DOI
Finkelstein S., Negrete F., Jang H., Gangiredla J., Mammel M., Patel I. R., et al. (2019). Prevalence, distribution, and phylogeny of type two toxin-antitoxin genes possessed by PubMed DOI PMC
Flores J. P., Arvizu S., Silva J., Fernández-Escartín E. (2011). Two cases of hemorrhagic diarrhea caused by PubMed DOI
Forsythe S. J. (2018). Updates on the PubMed DOI
Franco A. A., Kothary M., Gopinath G., Jarvis K., Grim C. J., Hu L., et al. (2011). Cpa, the outer membrane protease of PubMed DOI PMC
Garallah E. T., Al-Jubori S. (2020). Molecular detection of DOI
Gordillo Altamirano F. L., Barr J. J. (2019). Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 32, e00066–e00068. doi: 10.1128/CMR.00066-18, PMID: PubMed DOI PMC
Guerin E., Shkoporov A., Stockdale S. R., Clooney A. G., Ryan F. J., Sutton T., et al. (2018). Biology and taxonomy of PubMed DOI
Güerri M. L., Aladueña A., Echeíta A., Rotger R. (2004). Detection of integrons and antibiotic-resistance genes in PubMed DOI
Holý O., Cruz-Cordova A., Xicohtencatl-Cortés J., Hochel I., Parra-Flores J., Petrzelova J., et al. (2019). Occurrence of virulence factors in PubMed DOI
Holý O., Parra-Flores J., Lepuschitz S., Alarcón-Lavín M. P., Cruz-Córdova A., Xicohtencatl-Cortes J., et al. (2021). Molecular characterization of PubMed DOI PMC
Hu L., Cao G., Brown E. W., Allard M., Ma L., Zhang G. (2021). Whole genome sequencing and protein structure analyses of target genes for the detection of PubMed DOI PMC
Huehn S., La Ragione R. M., Anjum M., Saunders M., Woodward M. J., Bunge C., et al. (2010). Virulotyping and antimicrobial resistance typing of PubMed DOI
Ingram P., Inglis T., Vanzetti T., Henderson B., Harnett G., Murray R. (2011). Comparison of methods for PubMed DOI
Instituto Nacional de Normalización (2002). Chile. Norma Chilena NCh 2675 de detección de Salmonella. Available at: https://ecommerce.inn.cl/nch2675200244470 (Accessed October 10, 2020).
International Standards for Organization (ISO) (2017). ISO 22964:2017: microbiology of the food chain—horizontal method for the detection of PubMed
Iversen C., Forsythe S. (2004). Isolation of DOI
Iversen C., Mullane N., Mc Cardell B., Tall B. D., Lehner A., Fanning S., et al. (2008). PubMed DOI
Jain P., Sudhanthirakodi S., Chowdhury G., Joshi S., Anandan S., Ray U., et al. (2018). Antimicrobial resistance, plasmid, virulence, multilocus sequence typing and pulsed-field gel electrophoresis profiles of PubMed DOI PMC
Jang H., Chase H. R., Gangiredla J., Grim C. J., Patel I. R., Kothary M. H., et al. (2020). Analysis of the molecular diversity among PubMed DOI PMC
Jia B., Raphenya A. R., Alcock B., Waglechner N., Guo P., Tsang K., et al. (2017). CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573. doi: 10.1093/nar/gkw1004, PMID: PubMed DOI PMC
Johansson M., Bortolaia V., Tansirichaiya S., Aarestrup F. M., Roberts A. P., Petersen T. N. (2021). Detection of mobile genetic elements associated with antibiotic resistance in PubMed DOI PMC
Jones G., Pardos de la Gandara M., Herrera-Leon L., Herrera-Leon S., Varela Martinez C., Hureaux-Roy R., et al. (2019). Outbreak of PubMed DOI PMC
Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M., Forsythe S. (2012). PubMed DOI
Joseph S., Forsythe S. J. (2011). Predominance of PubMed DOI PMC
Joseph S., Forsythe S. (2012). Insights into the emergent bacterial pathogen PubMed DOI PMC
Jourdan-da Silva N., Fabre L., Robinson E., Fournet N., Nisavanh A., Bruyand M., et al. (2018). Ongoing nationwide outbreak of PubMed DOI PMC
Jünemann S., Sedlazeck F. J., Prior K., Albersmeier A., John U., Kalinowski J., et al. (2013). Updating benchtop sequencing performance comparison. Nat. Biotechnol. 31, 294–296. doi: 10.1038/nbt.2522, PMID: PubMed DOI
Khezri A., Avershina E., Ahmad R. (2021). Plasmid identification and plasmid-mediated antimicrobial gene detection in norwegian isolates. Microorganisms 9:52. doi: 10.3390/microorganisms9010052, PMID: PubMed DOI PMC
Kieffer N., Royer G., Decousser J. W., Bourrel A. S., Palmieri M., Ortiz De La Rosa J. M., et al. (2019). PubMed DOI PMC
Kim K., Jang S., Kim S., Park J., Heu S., Ryu S. (2008). Prevalence and genetic diversity of PubMed DOI
Kim K., Kim K., Choi J., Lim-Jeong A., Lee J., Hwang S., et al. (2010). Outer membrane proteins a (OmpA) and x (OmpX) are essential for basolateral invasion of PubMed DOI PMC
Lachowska M., Izdebski R., Urbanowicz P., Żabicka D., Królak-Olejnik B. (2021). Infection of PubMed DOI PMC
Lange S., Alkhnbashi O., Rose D., Will S., Backofen R. (2013). CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res. 41, 8034–8044. doi: 10.1093/nar/gkt606, PMID: PubMed DOI PMC
Lee Y.-D., Park J., Chang H. (2012). Detection, antibiotic susceptibility and biofilm formation of DOI
Lehner A., Tall B. D., Fanning S., Srikumar S. (2018). DOI
Leopold S., Goering R., Witten A., Harmsen D., Mellmann A. (2014). Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J. Clin. Microbiol. 52, 2365–2370. doi: 10.1128/JCM.00262-14, PMID: PubMed DOI PMC
Lepuschitz S., Ruppitsch W., Pekard-Amenitsch S., Forsythe S. J., Cormican M., Mach R. L., et al. (2019). Multicenter study of PubMed DOI PMC
Lepuschitz S., Sorschag S., Springer B., Allerberger F., Ruppitsch W. (2017). Draft genome sequence of carbapenemase-producing PubMed DOI PMC
Lepuschitz S., Weinmaier T., Mrazek K., Beisken S., Weinberger J., Posch A. E. (2020). Analytical performance validation of next-generation sequencing based clinical microbiology assays using a K-mer analysis workflow. Front. Microbiol. 11:1883. doi: 10.3389/fmicb.2020.01883, PMID: PubMed DOI PMC
Lesnick M. L., Reiner N. E., Fierer J., Guiney D. G. (2001). The PubMed DOI
Lou L., Zhang P., Piao R., Wang Y. (2019). PubMed DOI PMC
Louwen R., Staals R. H., Endtz H. P., van Baarlen P., van der Oost J. (2014). The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78, 74–88. doi: 10.1128/MMBR.00039-13, PMID: PubMed DOI PMC
Makarova K. S., Wolf Y. I., Alkhnbashi O. S., Costa F., Shah S. A., Saunders S. J., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736. doi: 10.1038/nrmicro3569, PMID: PubMed DOI PMC
Mambu J., Barilleau E., Fragnet-Trapp L., Le Vern Y., Olivier M., Sadrin G., et al. (2020). PubMed DOI PMC
Mange J. P., Stephan R., Borel L., Wild P., Kim K. S., Pospischil A., et al. (2006). Adhesive properties of PubMed DOI PMC
Mare A., Man A., Toma F., Ciurea C. N., Coşeriu R. L., Vintilă C., et al. (2020). Hemolysin-producing strains among diarrheagenic PubMed DOI PMC
Marraffini L. A. (2013). CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens. PLoS Pathog. 9:e1003765. doi: 10.1371/journal.ppat.1003765, PMID: PubMed DOI PMC
Mazzantini D., Fonnesu R., Celandroni F., Calvigioni M., Vecchione A., Mrusek D., et al. (2020). GTP-dependent FlhF homodimer supports secretion of a hemolysin in PubMed DOI PMC
Mezal E. H., Sabol A., Khan M. A., Ali N., Stefanova R., Khan A. A. (2014). Isolation and molecular characterization of PubMed DOI
Molloy C., Cagney C., O’Brien S., Iversen C., Fanning S., Duffy G. (2009). Surveillance and characterization by pulsed-field gel electrophoresis of PubMed DOI
Monte D. F. M., Sellera F. P., Lopes R., Keelara S., Landgraf M., Greene S., et al. (2020). Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent PubMed DOI PMC
Mossong J., Marques P., Ragimbeau C., Huberty-Krau P., Losch S., Meyer G., et al. (2007). Outbreaks of monophasic PubMed DOI
Müller A., Hächler H., Stephan R., Lehner A. (2014). Presence of PubMed DOI
Murugkar H. V., Rahman H., Dutta P. K. (2003). Distribution of virulence genes in PubMed
Nayak R., Stewart T., Wang R. F., Lin J., Cerniglia C. E., Kenney P. B. (2004). Genetic diversity and virulence gene determinants of antibiotic-resistant PubMed DOI
Ogrodzki P., Forsythe S. (2015). Capsular profiling of the PubMed DOI PMC
Ogrodzki P., Forsythe S. (2016). CRISPR–cas loci profiling of PubMed DOI
Panzenhagen P. H. N., Paul N. C., Conte C. A., Costa R. G., Rodrigues D. P., Shah D. H. (2018). Genetically distinct lineages of PubMed DOI
Parra-Flores J., Cruz-Córdova A., Acuña S., Riffo-Sepúlveda F., Maury-Sintjago E., Rodriguez-Fernández A., et al. (2021a). “
Parra-Flores J., Aguirre J., Juneja V., Jackson E., Cruz-Córdova A., Silva-Sanchez J., et al. (2018a). Virulence and antibiotic resistance profiles of PubMed DOI PMC
Parra-Flores J., Cerda-Leal F., Contreras A., Valenzuela-Riffo N., Rodriguez A., Aguirre J. (2018b). PubMed DOI PMC
Parra-Flores J., Holý O., Riffo F., Lepuschitz S., Maury-Sintjago E., Rodríguez-Fernández A., et al. (2021b). Profiling the virulence and antibiotic resistance genes of PubMed DOI PMC
Parra-Flores J., Maury-Sintjago E., Rodríguez-Fernández A., Acuña S., Cerda F., Aguirre J., et al. (2020). Microbiological quality of powdered infant formula in Latin America. J. Food Prot. 83, 534–541. doi: 10.4315/0362-028X.JFP-19-399, PMID: PubMed DOI
Podolak R., Black D. G. (2017). “Introduction and overview,” in In Control of
Ramsamy Y., Mlisana K. P., Allam M., Amoako D. G., Abia A. L. K., Ismail A., et al. (2020). Genomic analysis of carbapenemase-producing extensively drug-resistant PubMed DOI PMC
Richter L., du Plessis E. M., Duvenage S., Korsten L. (2020). Occurrence, phenotypic and molecular characterization of extended-Spectrum- and PubMed DOI PMC
Severi E., Hood D. W., Thomas G. H. (2007). Sialic acid utilization by bacterial pathogens. Microbiology 153, 2817–2822. doi: 10.1099/mic.0.2007/009480-0, PMID: PubMed DOI
Shi L., Liang Q., Zhan Z., Feng J., Zhao Y., Chen Y., et al. (2018). Co-occurrence of 3 different resistance plasmids in a multi-drug resistant PubMed DOI PMC
Silver L. L. (2017). Fosfomycin: mechanism and resistance. Cold Spring Harb. Perspect. Med. 7:a025262. doi: 10.1101/cshperspect.a025262, PMID: PubMed DOI PMC
Sohanpal B. K., Friar S., Roobol J., Plumbridge J. A., Blomfield I. C. (2007). Multiple co-regulatory elements and IHF are necessary for the control of PubMed DOI
Sonbol H., Joseph S., McAuley C., Craven H., Forsythe S. (2013). Multilocus sequence typing of DOI
Stephan R., Grim C., Gopinath G., Mammel M., Sathyamoorthy V., Trach L., et al. (2014). Re-examination of the taxonomic status of PubMed DOI PMC
Thung T. Y., Radu S., Mahyudin N. A., Rukayadi Y., Zakaria Z., Mazlan N., et al. (2018). Prevalence, virulence genes and antimicrobial resistance profiles of PubMed DOI PMC
U.S FDA (2022). FDA Investigation of
Uelze L., Borowiak M., Deneke C., Szabó I., Fischer J., Tausch S. H., et al. (2020). Performance and accuracy of four open-source tools for in silico serotyping of PubMed DOI PMC
Walling L. R., Butler J. S. (2019). Toxins targeting transfer RNAs: translation inhibition by bacterial toxin–antitoxin systems. Wiley Interdiscip. Rev. RNA 10:e1506. doi: 10.1002/wrna.1506, PMID: PubMed DOI PMC
Wang X., Biswas S., Paudyal N., Pan H., Li X., Fang W., et al. (2019). Antibiotic resistance in PubMed DOI PMC
Wang X., Wang Y., Ling N., Shen Y., Zhang D., Liu D., et al. (2021). Effects of PubMed DOI
Wang L., Zhu W., Lu G., Wu P., Wei Y., Su Y., et al. (2021). In silico species identification and serotyping for PubMed DOI
Wei Z., Xu X., Yan M., Chang H., Li Y., Kan B., et al. (2019). PubMed DOI
Xiang Y., Li F., Dong N., Tian S., Zhang H., Du X., et al. (2020). Investigation of a salmonellosis outbreak caused by multidrug resistant PubMed DOI PMC
Zeng H., Lei T., He W., Zhang J., Liang B., Li C., et al. (2018). Novel multidrug resistant PubMed DOI PMC
Zeng H., Zhang J., Li C., Xie T., Ling N., Wu Q., et al. (2017). The driving force of prophages and CRISPR-Cas system in the evolution of PubMed DOI PMC
Zhang S., Yin Y., Jones M. B., Zhang Z., Deatherage Kaiser B. L., Dinsmore B. A., et al. (2015). PubMed DOI PMC
Zhang F., Zhao S., Ren C., Zhu Y., Lai Y., Zhou F., et al. (2018). CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun. Biol. 1:180. doi: 10.1038/s42003-018-0184-6, PMID: PubMed DOI PMC