Laser-Induced Modification of Hydrogenated Detonation Nanodiamonds in Ethanol
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-12567J, 19-14523S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000760, LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34578568
PubMed Central
PMC8472243
DOI
10.3390/nano11092251
PII: nano11092251
Knihovny.cz E-resources
- Keywords
- Raman spectroscopy, carbon nano-onion, laser, nanodiamond, onion-like carbon, structure, surface chemistry, zeta potential,
- Publication type
- Journal Article MeSH
Apart from the frequently used high-temperature annealing of detonation nanodiamonds (DNDs) in an inert environment, laser irradiation of DNDs in a liquid can be effectively used for onion-like carbon (OLC) formation. Here, we used fully de-aggregated hydrogenated DNDs (H-DNDs) dispersed in ethanol, which were irradiated for up to 60 min using a 532 nm NdYAG laser with an energy of 150 mJ in a pulse (5 J/cm2) at a pulse duration of 10 ns and a repetition rate of 10 Hz. We investigated the DND surface chemistry, zeta potential, and structure as a function of laser irradiation time. Infrared spectroscopy revealed a monotonical decrease in the C-Hx band intensities and an increase of the C-O and C=O features. Transmission electron microscopy (TEM) revealed the formation of OLC, as well as a gradual loss of nanoparticle character, with increasing irradiation time. Surprisingly, for samples irradiated up to 40 min, the typical and unchanged DND Raman spectrum was recovered after their annealing in air at 450 °C for 300 min. This finding indicates the inhomogeneous sp3 to sp2 carbon transformation during laser irradiation, as well as the insensitivity of DND Raman spectra to surface chemistry, size, and transient structural changes.
Institute of Inorganic Chemistry of the Czech Academy of Sciences 25068 Husinec Řež Czech Republic
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
See more in PubMed
Mohapatra D., Nemala S.S., Sayed M.S., Shim J.-J., Mallick S., Bhargava P., Parida S. Carbon Nano-Onion-Powered Optically Transparent and Economical Dye-Sensitized Solar Cells. Nanoscale. 2020;12:20621–20630. doi: 10.1039/D0NR04382F. PubMed DOI
Pech D., Brunet M., Durou H., Huang P., Mochalin V., Gogotsi Y., Taberna P.-L., Simon P. Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-like Carbon. Nat. Nanotechnol. 2010;5:651–654. doi: 10.1038/nnano.2010.162. PubMed DOI
Jang D.M., Im H.S., Back S.H., Park K., Lim Y.R., Jung C.S., Park J., Lee M. Laser-Induced Graphitization of Colloidal Nanodiamonds for Excellent Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2014;16:2411–2416. doi: 10.1039/C3CP54039A. PubMed DOI
Sonkar S.K., Ghosh M., Roy M., Begum A., Sarkar S. Carbon Nano-Onions as Nontoxic and High-Fluorescence Bioimaging Agent in Food Chain—An In Vivo Study from Unicellular E. Coli to Multicellular C. Elegans. Mater. Express. 2012;2:105–114. doi: 10.1166/mex.2012.1064. DOI
Zeiger M., Jäckel N., Mochalin V.N., Presser V. Review: Carbon Onions for Electrochemical Energy Storage. J. Mater. Chem. A. 2016;4:3172–3196. doi: 10.1039/C5TA08295A. DOI
Aleksenskii A.E., Baidakova M.V., Vul A.Y., Davydov V.Y., Pevtsova Y.A. Diamond-Graphite Phase Transition in Ultradisperse-Diamond Clusters. Phys. Solid State. 1997;39:1007–1015. doi: 10.1134/1.1129989. DOI
Ahmed A.-I., Mandal S., Gines L., Williams O.A., Cheng C.-L. Low Temperature Catalytic Reactivity of Nanodiamond in Molecular Hydrogen. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI
Petit T., Arnault J.-C., Girard H.A., Sennour M., Bergonzo P. Early Stages of Surface Graphitization on Nanodiamond Probed by X-ray Photoelectron Spectroscopy. Phys. Rev. B. 2011;84:233407. doi: 10.1103/PhysRevB.84.233407. DOI
Petit T., Arnault J.-C., Girard H.A., Sennour M., Kang T.-Y., Cheng C.-L., Bergonzo P. Oxygen Hole Doping of Nanodiamond. Nanoscale. 2012;4:6792. doi: 10.1039/c2nr31655b. PubMed DOI
Schüpfer D.B., Badaczewski F., Peilstöcker J., Guerra-Castro J.M., Shim H., Firoozabadi S., Beyer A., Volz K., Presser V., Heiliger C., et al. Monitoring the Thermally Induced Transition from Sp3-Hybridized into Sp2-Hybridized Carbons. Carbon. 2021;172:214–227. doi: 10.1016/j.carbon.2020.09.063. DOI
Dhand V., Yadav M., Kim S.H., Rhee K.Y. A Comprehensive Review on the Prospects of Multi-Functional Carbon Nano Onions as an Effective, High- Performance Energy Storage Material. Carbon. 2021;175:534–575. doi: 10.1016/j.carbon.2020.12.083. DOI
Mykhaylyk O.O., Solonin Y.M., Batchelder D.N., Brydson R. Transformation of Nanodiamond into Carbon Onions: A Comparative Study by High-Resolution Transmission Electron Microscopy, Electron Energy-Loss Spectroscopy, X-ray Diffraction, Small-Angle X-ray Scattering, and Ultraviolet Raman Spectroscopy. J. Appl. Phys. 2005;97:074302. doi: 10.1063/1.1868054. DOI
Hu H., Li Q., Li L., Teng X., Feng Z., Zhang Y., Wu M., Qiu J. Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter. 2020;3:95–126. doi: 10.1016/j.matt.2020.05.001. DOI
De Feudis M., Caricato A.P., Taurino A., Ossi P.M., Castiglioni C., Brambilla L., Maruccio G., Monteduro A.G., Broitman E., Chiodini G., et al. Diamond Graphitization by Laser-Writing for All-Carbon Detector Applications. Diam. Relat. Mater. 2017;75:25–33. doi: 10.1016/j.diamond.2016.12.019. DOI
Cadot G.B.J., Thomas K., Best J.P., Taylor A.A., Michler J., Axinte D.A., Billingham J. Investigation of the Microstructure Change Due to Phase Transition in Nanosecond Pulsed Laser Processing of Diamond. Carbon. 2018;127:349–365. doi: 10.1016/j.carbon.2017.10.030. DOI
Fraczyk J., Rosowski A., Kolesinska B., Koperkiewcz A., Sobczyk-Guzenda A., Kaminski Z., Dudek M. Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives. Nanomaterials. 2018;8:908. doi: 10.3390/nano8110908. PubMed DOI PMC
Jang D.M., Im H.S., Myung Y., Cho Y.J., Kim H.S., Back S.H., Park J., Cha E.H., Lee M. Hydrogen and Carbon Monoxide Generation from Laser-Induced Graphitized Nanodiamonds in Water. Phys. Chem. Chem. Phys. 2013;15:7155. doi: 10.1039/c3cp50769f. PubMed DOI
Xiao J., Ouyang G., Liu P., Wang C.X., Yang G.W. Reversible Nanodiamond-Carbon Onion Phase Transformations. Nano Lett. 2014;14:3645–3652. doi: 10.1021/nl5014234. PubMed DOI
Cao L., Shiral Fernando K.A., Liang W., Seilkop A., Monica Veca L., Sun Y.-P., Bunker C.E. Carbon Dots for Energy Conversion Applications. J. Appl. Phys. 2019;125:220903. doi: 10.1063/1.5094032. DOI
Stehlik S., Henych J., Stenclova P., Kral R., Zemenova P., Pangrac J., Vanek O., Kromka A., Rezek B. Size and Nitrogen Inhomogeneity in Detonation and Laser Synthesized Primary Nanodiamond Particles Revealed via Salt-Assisted Deaggregation. Carbon. 2021;171:230–239. doi: 10.1016/j.carbon.2020.09.026. DOI
Stehlik S., Varga M., Stenclova P., Ondic L., Ledinsky M., Pangrac J., Vanek O., Lipov J., Kromka A., Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 Nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI
Nunn N., Shenderova O. Toward a Golden Standard in Single Digit Detonation Nanodiamond: Toward a Golden Standard in Single Digit Detonation Nanodiamond. Phys. Status Solidi A. 2016;213:2138–2145. doi: 10.1002/pssa.201600224. DOI
Stehlik S., Glatzel T., Pichot V., Pawlak R., Meyer E., Spitzer D., Rezek B. Water Interaction with Hydrogenated and Oxidized Detonation Nanodiamonds—Microscopic and Spectroscopic Analyses. Diam. Relat. Mater. 2015;63:97–102. doi: 10.1016/j.diamond.2015.08.016. DOI
Petit T., Puskar L., Dolenko T., Choudhury S., Ritter E., Burikov S., Laptinskiy K., Brzustowski Q., Schade U., Yuzawa H., et al. Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C. 2017;121:5185–5194. doi: 10.1021/acs.jpcc.7b00721. DOI
Lawson S.C., Fisher D., Hunt D.C., Newton M.E. On the Existence of Positively Charged Single-Substitutional Nitrogen in Diamond. J. Phys. Condens. Matter. 1998;10:6171–6180. doi: 10.1088/0953-8984/10/27/016. DOI
Ginés L., Mandal S., Cheng C.-L., Sow M., Williams O.A. Positive Zeta Potential of Nanodiamonds. Nanoscale. 2017;9:12549–12555. doi: 10.1039/C7NR03200E. PubMed DOI
Boehm H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon. 1994;32:759–769. doi: 10.1016/0008-6223(94)90031-0. DOI
Stehlik S., Mermoux M., Schummer B., Vanek O., Kolarova K., Stenclova P., Vlk A., Ledinsky M., Pfeifer R., Romanyuk O., et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 Nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI
Chang S.L.Y., Reineck P., Williams D., Bryant G., Opletal G., El-Demrdash S.A., Chiu P.-L., Ōsawa E., Barnard A.S., Dwyer C. Dynamic Self-Assembly of Detonation Nanodiamond in Water. Nanoscale. 2020;12:5363–5367. doi: 10.1039/C9NR08984E. PubMed DOI
Osswald S., Yushin G., Mochalin V., Kucheyev S.O., Gogotsi Y. Control of Sp2/Sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006;128:11635–11642. doi: 10.1021/ja063303n. PubMed DOI
Mermoux M., Chang S., Girard H.A., Arnault J.-C. Raman Spectroscopy Study of Detonation Nanodiamond. Diam. Relat. Mater. 2018;87:248–260. doi: 10.1016/j.diamond.2018.06.001. DOI
Mermoux M., Crisci A., Petit T., Girard H.A., Arnault J.-C. Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI
Stehlik S., Varga M., Ledinsky M., Miliaieva D., Kozak H., Skakalova V., Mangler C., Pennycook T.J., Meyer J.C., Kromka A., et al. High-Yield Fabrication and Properties of 1.4 Nm Nanodiamonds with Narrow Size Distribution. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep38419. PubMed DOI PMC
Osswald S., Mochalin V.N., Havel M., Yushin G., Gogotsi Y. Phonon Confinement Effects in the Raman Spectrum of Nanodiamond. Phys. Rev. B. 2009;80:075419. doi: 10.1103/PhysRevB.80.075419. DOI
Korepanov V.I., Hamaguchi H., Osawa E., Ermolenkov V., Lednev I.K., Etzold B.J.M., Levinson O., Zousman B., Epperla C.P., Chang H.-C. Carbon Structure in Nanodiamonds Elucidated from Raman Spectroscopy. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI
Duan X., Tian W., Zhang H., Sun H., Ao Z., Shao Z., Wang S. Sp2/Sp3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catal. 2019;9:7494–7519. doi: 10.1021/acscatal.9b01565. DOI
Duan X., Ao Z., Li D., Sun H., Zhou L., Suvorova A., Saunders M., Wang G., Wang S. Surface-Tailored Nanodiamonds as Excellent Metal-Free Catalysts for Organic Oxidation. Carbon. 2016;103:404–411. doi: 10.1016/j.carbon.2016.03.034. DOI
Reinert L., Zeiger M., Suárez S., Presser V., Mücklich F. Dispersion Analysis of Carbon Nanotubes, Carbon Onions, and Nanodiamonds for Their Application as Reinforcement Phase in Nickel Metal Matrix Composites. RSC Adv. 2015;5:95149–95159. doi: 10.1039/C5RA14310A. DOI