Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds

. 2024 Mar 27 ; 14 (7) : . [epub] 20240327

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38607124

Grantová podpora
CZ.02.01.01/00/22_008/0004596 OP JAC financed by ESIF and the MEYS SENDISO
23-04876S Czech Science Foundation
LUASK22147 Ministry of Education Youth and Sports
Strategy AV21 Czech Academy of Sciences

The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative analysis of the graphitization process in various types of hydrogenated NDs, considering differences in ND size and quality. We prepared three types of hydrogenated NDs: high-pressure high-temperature NDs (HPHT ND-H; 0-30 nm), conventional detonation nanodiamonds (DND-H; ~5 nm), and size- and nitrogen-reduced hydrogenated nanodiamonds (snr-DND-H; 2-3 nm). The samples underwent annealing in an ultra-high vacuum and sputtering by Ar cluster ion beam (ArCIB). Samples were investigated by in situ X-ray photoelectron spectroscopy (XPS), in situ ultraviolet photoelectron spectroscopy (UPS), and Raman spectroscopy (RS). Our investigation revealed that the graphitization temperature of NDs ranges from 600 °C to 700 °C and depends on the size and crystallinity of the NDs. Smaller DND particles with a high density of defects exhibit a lower graphitization temperature. We revealed a constant energy difference of 271.3 eV between the sp-peak in the valence band spectra (at around 13.7 eV) and the sp3 component in the C 1s core level spectra (at 285.0 eV). The identification of this energy difference helps in calibrating charge shifts and serves the unambiguous identification of the sp3 bond contribution in the C 1s spectra obtained from ND samples. Results were validated through reference measurements on hydrogenated single crystal C(111)-H and highly-ordered pyrolytic graphite (HOPG).

Zobrazit více v PubMed

Zhu D., Zhang L., Ruther R.E., Hamers R.J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013;12:836–841. doi: 10.1038/nmat3696. PubMed DOI

Marchal C., Saoudi L., Girard H.A., Keller V., Arnault J. Oxidized Detonation Nanodiamonds Act as an Efficient Metal-Free Photocatalyst to Produce Hydrogen Under Solar Irradiation. Adv. Energy Sustain. Res. 2023;5:2300260. doi: 10.1002/aesr.202300260. DOI

Zhou Y., Zhao K., Zhang J., Zhu Y., Ma Y., Zhang H., Song D., Shi X., Zhang L., Ding Y. Synergistic effects of nanodiamond modified separators toward highly stable and safe lithium metal batteries. J. Mater. Chem. A. 2021;9:16046–16055. doi: 10.1039/D1TA03533A. DOI

Miliaieva D., Djoumessi A.S., Čermák J., Kolářová K., Schaal M., Otto F., Shagieva E., Romanyuk O., Pangrác J., Kuliček J., et al. Absolute energy levels in nanodiamonds of different origins and surface chemistries. Nanoscale Adv. 2023;5:4402–4414. doi: 10.1039/D3NA00205E. PubMed DOI PMC

Afandi A., Howkins A., Boyd I.W., Jackman R.B. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018;8:3270. doi: 10.1038/s41598-018-21670-w. PubMed DOI PMC

Qin J.-X., Yang X.-G., Lv C.-F., Li Y.-Z., Liu K.-K., Zang J.-H., Yang X., Dong L., Shan C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI

Turner S., Shenderova O., Da Pieve F., Lu Y., Yücelen E., Verbeeck J., Lamoen D., Van Tendeloo G. Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond: Microscopy and spectroscopy analysis of pristine, nitrogen containing DND. Phys. Status Solidi A. 2013;210:1976–1984. doi: 10.1002/pssa.201300315. DOI

Shenderova O., Nunn N. Nanodiamonds. Elsevier; Amsterdam, The Netherlands: 2017. Production and purification of nanodiamonds; pp. 25–56. DOI

Stehlik S., Mermoux M., Schummer B., Vanek O., Kolarova K., Stenclova P., Vlk A., Ledinsky M., Pfeifer R., Romanyuk O., et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI

Arnault J.C., Girard H.A. Hydrogenated nanodiamonds: Synthesis and surface properties. Curr. Opin. Solid State Mater. Sci. 2017;21:10–16. doi: 10.1016/j.cossms.2016.06.007. DOI

Maier F., Ristein J., Ley L. Electron. affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B. 2001;64:165411. doi: 10.1103/PhysRevB.64.165411. DOI

Dideikin A.T., Aleksenskii A.E., Baidakova M.V., Brunkov P.N., Brzhezinskaya M., Davydov V.Y., Levitskii V.S., Kidalov S.V., Kukushkina Y.A., Kirilenko D.A., et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon. 2017;122:737–745. doi: 10.1016/j.carbon.2017.07.013. DOI

Arnault J.C. X-ray Photoemission Spectroscopy applied to nanodiamonds: From surface chemistry to in situ reactivity. Diam. Relat. Mater. 2018;84:157–168. doi: 10.1016/j.diamond.2018.03.015. DOI

Yeganeh M., Coxon P.R., Brieva A.C., Dhanak V.R., Šiller L., Butenko Y.V. Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys. Rev. B. 2007;75:155404. doi: 10.1103/PhysRevB.75.155404. DOI

Saoudi L., Girard H.A., Larquet E., Mermoux M., Leroy J., Arnault J.-C. Colloidal stability over months of highly crystalline high-pressure high-temperature hydrogenated nanodiamonds in water. Carbon. 2023;202:438–449. doi: 10.1016/j.carbon.2022.10.084. DOI

Kono S., Kageura T., Hayashi Y., Ri S.-G., Teraji T., Takeuchi D., Ogura M., Kodama H., Sawabe A., Inaba M., et al. Carbon 1s X-ray photoelectron spectra of realistic samples of hydrogen-terminated and oxygen-terminated CVD diamond (111) and (001) Diam. Relat. Mater. 2019;93:105–130. doi: 10.1016/j.diamond.2019.01.017. DOI

Baer D.R., Artyushkova K., Cohen H., Easton C.D., Engelhard M., Gengenbach T.R., Greczynski G., Mack P., Morgan D.J., Roberts A. XPS guide: Charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020;38:031204. doi: 10.1116/6.0000057. DOI

Kozak H., Artemenko A., Čermák J., Švrček V., Kromka A., Rezek B. Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio-frequency plasma treatment. Vib. Spectrosc. 2016;83:108–114. doi: 10.1016/j.vibspec.2016.01.010. DOI

Romanyuk O., Zemek J., Houdková J., Babčenko O., Shagieva E., Beranová K., Kromka A., Jiříček P. Effects of monoatomic and cluster bombardment with Ar ion beam on the surface of hydrogenated nanocrystalline diamond. Diam. Relat. Mater. 2023;133:109748. doi: 10.1016/j.diamond.2023.109748. DOI

Cuenca J.A., Thomas E.L.H., Mandal S., Morgan D.J., Lloret F., Araujo D., Williams O.A., Porch A. Microwave Permittivity of Trace sp2 Carbon Impurities in Sub-Micron Diamond Powders. ACS Omega. 2018;3:2183–2192. doi: 10.1021/acsomega.7b02000. PubMed DOI PMC

Fujimoto A., Yamada Y., Koinuma M., Sato S. Origins of sp3C peaks in C 1s X-ray Photoelectron Spectra of Carbon Materials. Anal. Chem. 2016;88:6110–6114. doi: 10.1021/acs.analchem.6b01327. PubMed DOI

Wang Z.-Q., Yang Y.-G., Tai L., Lau L.W.-M., Zhou D. Mitigating surface charging in XPS using an in-situ sub-nanometer gold coating technique. Mater. Charact. 2023;196:112663. doi: 10.1016/j.matchar.2023.112663. DOI

Filippi M., Calliari L., Pucella G., Verona-Rinati G. Temperature evolution of the surface region of CVD diamond: An electron spectroscopy study. Surf. Sci. 2004;573:225–236. doi: 10.1016/j.susc.2004.09.033. DOI

Haerle R., Riedo E., Pasquarello A., Baldereschi A. sp2/sp3 hybridization ratio in amorphous carbon from C 1 s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B. 2001;65:045101. doi: 10.1103/PhysRevB.65.045101. DOI

Titantah J.T., Lamoen D. sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques. Carbon. 2005;43:1311–1316. doi: 10.1016/j.carbon.2005.01.002. DOI

Kumaragurubaran S., Yamada T., Shikata S. Core Level Photoelectron. Spectroscopic Study on Oxidized Phosphorus-Doped (100) Diamond Surfaces after Vacuum Annealing. Jpn. J. Appl. Phys. 2009;48:011602. doi: 10.1143/JJAP.48.011602. DOI

Lau W.M., Huang L.J., Bello I., Yiu Y.M., Lee S.-T. Modification of surface band bending of diamond by low energy argon and carbon ion bombardment. J. Appl. Phys. 1994;75:3385–3391. doi: 10.1063/1.357016. DOI

Ley L., Graupner R., Cui J.B., Ristein J. Electronic properties of single crystalline diamond surfaces. Carbon. 1999;37:793–799. doi: 10.1016/S0008-6223(98)00273-5. DOI

Petit T., Arnault J.-C., Girard H.A., Sennour M., Bergonzo P. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B. 2011;84:233407. doi: 10.1103/PhysRevB.84.233407. DOI

Petit T., Arnault J.-C., Girard H.A., Sennour M., Kang T.-Y., Cheng C.-L., Bergonzo P. Oxygen hole doping of nanodiamond. Nanoscale. 2012;4:6792–6799. doi: 10.1039/c2nr31655b. PubMed DOI

Graupner R., Maier F., Ristein J., Ley L., Jung C. High-resolution surface-sensitive C 1 s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces. Phys. Rev. B. 1998;57:12397–12409. doi: 10.1103/PhysRevB.57.12397. DOI

Liu J.W., Liao M.Y., Imura M., Koide Y. Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond. Appl. Phys. Lett. 2012;101:252108. doi: 10.1063/1.4772985. DOI

Bydzovska I., Shagieva E., Gordeev I., Romanyuk O., Nemeckova Z., Henych J., Ondic L., Kromka A., Stehlik S. Laser-Induced Modification of Hydrogenated Detonation Nanodiamonds in Ethanol. Nanomaterials. 2021;11:2251. doi: 10.3390/nano11092251. PubMed DOI PMC

Ogawa S., Yamada T., Ishizduka S., Yoshigoe A., Hasegawa M., Teraoka Y., Takakuwa Y. Vacuum Annealing Formation of Graphene on Diamond C(111) Surfaces Studied by Real-Time Photoelectron Spectroscopy. Jpn. J. Appl. Phys. 2012;51:11PF02. doi: 10.1143/JJAP.51.11PF02. DOI

Romanyuk O., Varga M., Tulic S., Izak T., Jiricek P., Kromka A., Skakalova V., Rezek B. Study of Ni-Catalyzed Graphitization Process of Diamond by in Situ X-ray Photoelectron Spectroscopy. J. Phys. Chem. C. 2018;122:6629–6636. doi: 10.1021/acs.jpcc.7b12334. PubMed DOI PMC

Veyan J.-F., de Obaldia E., Alcantar-Peña J.J., Montes-Gutierrez J., Arellano-Jimenez M.J., Yacaman M.J., Auciello O. Argon atoms insertion in diamond: New insights in the identification of carbon C 1s peak in X-ray photoelectron spectroscopy analysis. Carbon. 2018;134:29–36. doi: 10.1016/j.carbon.2018.03.053. DOI

Greczynski G., Hultman L. Critical method evaluation refutes the Ar 2p signal of implanted Ar for referencing X-ray photoelectron spectra. Appl. Surf. Sci. 2023;635:157598. doi: 10.1016/j.apsusc.2023.157598. DOI

Gaowei M., Muller E.M., Rumaiz A.K., Weiland C., Cockayne E., Jordan-Sweet J., Smedley J., Woicik J.C. Annealing dependence of diamond-metal Schottky barrier heights probed by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2012;100:201606. doi: 10.1063/1.4718028. DOI

Kern G., Hafner J., Kresse G. Atomic and electronic structure of diamond (111) surfaces I. Reconstruction and hydrogen-induced de-reconstruction of the one dangling-bond surface. Surf. Sci. 1996;366:445–463. doi: 10.1016/0039-6028(96)00837-0. DOI

Wilson J.I.B., Walton J.S., Beamson G. Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2001;121:183–201. doi: 10.1016/S0368-2048(01)00334-6. DOI

Kozakov A.T., Kochur A.G., Kumar N., Panda K., Nikolskii A.V., Sidashov A.V. Determination of sp2 and sp3 phase fractions on the surface of diamond films from C1s, valence band X-ray photoelectron spectra and CKVV X-ray-excited Auger spectra. Appl. Surf. Sci. 2021;536:147807. doi: 10.1016/j.apsusc.2020.147807. DOI

Seshan V., Murthy D.H.K., Castellanos-Gomez A., Sachdeva S., Ahmad H.A., Janssens S.D., Janssen W., Haenen K., van der Zant H.S.J., Sudhölter E.J.R., et al. Contactless Photoconductance Study on Undoped and Doped Nanocrystalline Diamond Films. ACS Appl. Mater. Interfaces. 2014;6:11368–11375. doi: 10.1021/am501907q. PubMed DOI

Speranza G. Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. Materials. 2022;15:4434. doi: 10.3390/ma15134434. PubMed DOI PMC

Speranza G., Calliari L., Laidani N., Anderle M. Semi-quantitative description of C hybridization via s- and p-partial density of states probing: An electron spectroscopy study. Diam. Relat. Mater. 2000;9:1856–1861. doi: 10.1016/S0925-9635(00)00338-1. DOI

Mikesova J., Miliaieva D., Stenclova P., Kindermann M., Vuckova T., Madlikova M., Fabry M., Veverka V., Schimer J., Krejci P., et al. Nanodiamonds as traps for fibroblast growth factors: Parameters influencing the interaction. Carbon. 2022;195:372–386. doi: 10.1016/j.carbon.2022.04.017. DOI

Stehlik S., Henych J., Stenclova P., Kral R., Zemenova P., Pangrac J., Vanek O., Kromka A., Rezek B. Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon. 2021;171:230–239. doi: 10.1016/j.carbon.2020.09.026. DOI

KolXPD Software for Spectroscopy Data Measurement and Processing. [(accessed on 23 March 2024)]. Available online: https://www.kolibrik.net/en/solutions-products/kolxpd.

Speranza G., Laidani N. Measurement of the relative abundance of sp2 and sp3 hybridised atoms in carbon based materials by XPS: A critical approach. Part I. Diam. Relat. Mater. 2004;13:445–450. doi: 10.1016/j.diamond.2003.11.077. DOI

Rabchinskii M.K., Saveliev S.D., Stolyarova D.Y., Brzhezinskaya M., Kirilenko D.A., Baidakova M.V., Ryzhkov S.A., Shnitov V.V., Sysoev V.V., Brunkov P.N. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon. 2021;182:593–604. doi: 10.1016/j.carbon.2021.06.057. DOI

Ahmed A.-I., Mandal S., Gines L., Williams O.A., Cheng C.-L. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon. 2016;110:438–442. doi: 10.1016/j.carbon.2016.09.019. DOI

Kondo T., Neitzel I., Mochalin V.N., Urai J., Yuasa M., Gogotsi Y. Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI

Kolarova K., Bydzovska I., Romanyuk O., Shagieva E., Ukraintsev E., Kromka A., Rezek B., Stehlik S. Hydrogenation of HPHT nanodiamonds and their nanoscale interaction with chitosan. Diam. Relat. Mater. 2023;134:109754. doi: 10.1016/j.diamond.2023.109754. DOI

Mermoux M., Chang S., Girard H.A., Arnault J.-C. Raman spectroscopy study of detonation nanodiamond. Diam. Relat. Mater. 2018;87:248–260. doi: 10.1016/j.diamond.2018.06.001. DOI

Sorkin A., Tay B., Su H. Three-Stage Transformation Pathway from Nanodiamonds to Fullerenes. J. Phys. Chem. A. 2011;115:8327–8334. doi: 10.1021/jp200449f. PubMed DOI

Raty J.-Y., Galli G., Bostedt C., Van Buuren T., Terminello L. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds. Phys. Rev. Lett. 2003;90:037401. doi: 10.1103/PhysRevLett.90.037401. PubMed DOI

Dhanak V.R., Butenko Y.V., Brieva A.C., Coxon P.R., Alves L., Šiller L. Chemical Functionalization of Nanodiamond by Amino Groups: An X-Ray Photoelectron Spectroscopy Study. J. Nanosci. Nanotech. 2012;12:3084–3090. doi: 10.1166/jnn.2012.4547. PubMed DOI

Moulder J.F., Chastain J., editors. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Update. Perkin-Elmer Corporation; Eden Prairie, MN, USA: 1992.

Ducrozet F., Girard H.A., Jianu T., Peulon S., Brun E., Sicard-Roselli C., Arnault J.-C. Unintentional formation of nitrate and nitrite ions during nanodiamonds sonication: A source of radical and electron scavengers. Colloids Surf. A Physicochem. Eng. Asp. 2023;663:131087. doi: 10.1016/j.colsurfa.2023.131087. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...