Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 MH084038
NIMH NIH HHS - United States
R21 MH082417
NIMH NIH HHS - United States
PubMed
29118102
PubMed Central
PMC5719978
DOI
10.1523/jneurosci.0630-17.2017
PII: JNEUROSCI.0630-17.2017
Knihovny.cz E-zdroje
- Klíčová slova
- NMDA antagonist, gamma, neural discoordination, oscillations, place cell, theta,
- MeSH
- fencyklidin aplikace a dávkování toxicita MeSH
- halucinogeny aplikace a dávkování toxicita MeSH
- hipokampální oblast CA1 účinky léků patofyziologie MeSH
- injekce intraventrikulární MeSH
- krysa rodu Rattus MeSH
- lokomoce účinky léků fyziologie MeSH
- nervová síť účinky léků patofyziologie MeSH
- potkani Long-Evans MeSH
- prostorové chování účinky léků fyziologie MeSH
- učení vyhýbat se účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fencyklidin MeSH
- halucinogeny MeSH
We used the psychotomimetic phencyclidine (PCP) to investigate the relationships among cognitive behavior, coordinated neural network function, and information processing within the hippocampus place cell system. We report in rats that PCP (5 mg/kg, i.p.) impairs a well learned, hippocampus-dependent place avoidance behavior in rats that requires cognitive control even when PCP is injected directly into dorsal hippocampus. PCP increases 60-100 Hz medium-freguency gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration. PCP discoordinates theta-modulated medium-frequency and slow gamma oscillations in CA1 LFPs such that medium-frequency gamma oscillations become more theta-organized than slow gamma oscillations. CA1 place cell firing fields are preserved under PCP, but the drug discoordinates the subsecond temporal organization of discharge among place cells. This discoordination causes place cell ensemble representations of a familiar space to cease resembling pre-PCP representations despite preserved place fields. These findings point to the cognitive impairments caused by PCP arising from neural discoordination. PCP disrupts the timing of discharge with respect to the subsecond timescales of theta and gamma oscillations in the LFP. Because these oscillations arise from local inhibitory synaptic activity, these findings point to excitation-inhibition discoordination as the root of PCP-induced cognitive impairment.SIGNIFICANCE STATEMENT Hippocampal neural discharge is temporally coordinated on timescales of theta and gamma oscillations in the LFP and the discharge of a subset of pyramidal neurons called "place cells" is spatially organized such that discharge is restricted to locations called a cell's "place field." Because this temporal coordination and spatial discharge organization is thought to represent spatial knowledge, we used the psychotomimetic phencyclidine (PCP) to disrupt cognitive behavior and assess the importance of neural coordination and place fields for spatial cognition. PCP impaired the judicious use of spatial information and discoordinated hippocampal discharge without disrupting firing fields. These findings dissociate place fields from spatial cognitive behavior and suggest that hippocampus discharge coordination is crucial to spatial cognition.
Center for Neural Science New York University New York New York 10003
Department of Physiology and Pharmacology State University of New York Downstate Medical Center
Institute of Physiology Czech Academy of Sciences Prague 14220 Czech Republic and
National Institute of Mental Health Klecany 25067 Czech Republic
Neuroscience Institute New York University Langone Health New York New York 10016
The Robert F Furchgott Center for Neural and Behavioral Science
Zobrazit více v PubMed
Abi-Saab WM, D'Souza DC, Moghaddam B, Krystal JH (1998) The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 31:104–109. 10.1055/s-2007-979354 PubMed DOI
Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554. PubMed PMC
Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575. 10.1111/j.1476-5381.1983.tb11031.x PubMed DOI PMC
Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–186. 10.1038/378182a0 PubMed DOI
Bannerman DM, Rawlins JN, Good MA (2006) The drugs don't work-or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology (Berl) 188:552–566. 10.1007/s00213-006-0403-6 PubMed DOI
Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby Ø, Rawlins JN, Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15:1153–1159. 10.1038/nn.3166 PubMed DOI PMC
Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32:423–435. 10.1523/JNEUROSCI.4122-11.2012 PubMed DOI PMC
Benardo LS. (1995) N-methyl-D-aspartate transmission modulates GABAB-mediated inhibition of rat hippocampal pyramidal neurons in vitro. Neuroscience 68:637–643. 10.1016/0306-4522(95)00164-E PubMed DOI
Bieri KW, Bobbitt KN, Colgin LL (2014) Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82:670–681. 10.1016/j.neuron.2014.03.013 PubMed DOI PMC
Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811. 10.1176/ajp.154.6.805 PubMed DOI
Buzsáki G. (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–385. 10.1016/j.neuron.2010.09.023 PubMed DOI PMC
Caixeta FV, Cornélio AM, Scheffer-Teixeira R, Ribeiro S, Tort AB (2013) Ketamine alters oscillatory coupling in the hippocampus. Sci Rep 3:2348. 10.1038/srep02348 PubMed DOI PMC
Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628. 10.1126/science.1128115 PubMed DOI PMC
Carter CS, Barch DM (2007) Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophr Bull 33:1131–1137. 10.1093/schbul/sbm081 PubMed DOI PMC
Cohen BD, Rosenbaum G, Luby ED, Gottlieb JS (1962) Comparison of phencyclidine hydrochloride (Sernyl) with other drugs. Simulation of schizophrenic performance with phencyclidine hydrochloride (Sernyl), lysergic acid diethylamide (LSD-25), and amobarbital (Amytal) sodium; II. Symbolic and sequential thinking. Arch Gen Psychiatry 6:395–401. 10.1001/archpsyc.1962.01710230063007 PubMed DOI
Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357. 10.1038/nature08573 PubMed DOI
Dragoi G, Buzsáki G (2006) Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50:145–157. 10.1016/j.neuron.2006.02.023 PubMed DOI
Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469:397–401. 10.1038/nature09633 PubMed DOI PMC
Dragoi G, Tonegawa S (2013) Distinct preplay of multiple novel spatial experiences in the rat. Proc Natl Acad Sci U S A 110:9100–9105. 10.1073/pnas.1306031110 PubMed DOI PMC
Driesen NR, McCarthy G, Bhagwagar Z, Bloch MH, Calhoun VD, D'Souza DC, Gueorguieva R, He G, Leung HC, Ramani R, Anticevic A, Suckow RF, Morgan PT, Krystal JH (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology 38:2613–2622. 10.1038/npp.2013.170 PubMed DOI PMC
Dvorak D, Fenton AA (2014) Toward a proper estimation of phase-amplitude coupling in neural oscillations. J Neurosci Methods 225:42–56. 10.1016/j.jneumeth.2014.01.002 PubMed DOI PMC
Ehrlichman RS, Gandal MJ, Maxwell CR, Lazarewicz MT, Finkel LH, Contreras D, Turetsky BI, Siegel SJ (2009) N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia. Neuroscience 158:705–712. 10.1016/j.neuroscience.2008.10.031 PubMed DOI
Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA (2001) NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields”. Neuron 31:631–638. 10.1016/S0896-6273(01)00401-9 PubMed DOI
Fenton AA. (2015) Excitation-inhibition discoordination in rodent models of mental disorders. Biol Psychiatry 77:1079–1088. 10.1016/j.biopsych.2015.03.013 PubMed DOI PMC
Fenton AA, Bures J (2003) Navigation in the moving world. In: The neurobiology of spatial behaviour (Jeffery K. J., ed). Oxford: OUP.
Fenton AA, Muller RU (1998) Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc Natl Acad Sci U S A 95:3182–3187. 10.1073/pnas.95.6.3182 PubMed DOI PMC
Fenton AA, Wesierska M, Kaminsky Y, Bures J (1998) Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc Natl Acad Sci U S A 95:11493–11498. 10.1073/pnas.95.19.11493 PubMed DOI PMC
Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly-arranged, and expanded place fields in the larger space. J Neurosci 28:11250–11262. 10.1523/JNEUROSCI.2862-08.2008 PubMed DOI PMC
Fenton AA, Lytton WW, Barry JM, Lenck-Santini PP, Zinyuk LE, Kubík S, Bures J, Poucet B, Muller RU, Olypher AV (2010) Attention-like modulation of hippocampus place cell discharge. J Neurosci 30:4613–4625. 10.1523/JNEUROSCI.5576-09.2010 PubMed DOI PMC
Fox SE, Ranck JB Jr (1975) Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol 49:299–313. 10.1016/0014-4886(75)90213-7 PubMed DOI
Fox SE, Wolfson S, Ranck JB Jr (1986) Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Exp Brain Res 62:495–508. PubMed
Fries P. (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224. 10.1146/annurev.neuro.051508.135603 PubMed DOI
Friston K, Buzsáki G (2016) The functional anatomy of time: what and when in the brain. Trends Cogn Sci 20:500–511. 10.1016/j.tics.2016.05.001 PubMed DOI
Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043. PubMed PMC
Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003) Organization of cell assemblies in the hippocampus. Nature 424:552–556. 10.1038/nature01834 PubMed DOI
Hebb DO. (1949) The organization of behavior, a neuropsychological theory. New York: Wiley.
Hoffman RE. (1997) Neural network simulations, cortical connectivity, and schizophrenic psychosis. MD Comput 14:200–208. PubMed
Hoffman RE, McGlashan TH (2001) Neural network models of schizophrenia. Neuroscientist 7:441–454. 10.1177/107385840100700513 PubMed DOI
Holcomb HH, Lahti AC, Medoff DR, Cullen T, Tamminga CA (2005) Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia. Neuropsychopharmacology 30:2275–2282. 10.1038/sj.npp.1300824 PubMed DOI
Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500. 10.1523/JNEUROSCI.2213-07.2007 PubMed DOI PMC
Hong LE, Summerfelt A, Buchanan RW, O'Donnell P, Thaker GK, Weiler MA, Lahti AC (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632–640. 10.1038/npp.2009.168 PubMed DOI PMC
Itil T, Keskiner A, Kiremitci N, Holden JM (1967) Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 12:209–212. 10.1177/070674376701200217 PubMed DOI
Itskov V, Pastalkova E, Mizuseki K, Buzsáki G, Harris KD (2008) Theta-mediated dynamics of spatial information in hippocampus. J Neurosci 28:5959–5964. 10.1523/JNEUROSCI.5262-07.2008 PubMed DOI PMC
Jackson J, Redish AD (2007) Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks. Hippocampus 17:1209–1229. 10.1002/hipo.20359 PubMed DOI
Jodo E. (2013) The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia. J Physiol Paris 107:434–440. 10.1016/j.jphysparis.2013.06.002 PubMed DOI
Jodo E, Suzuki Y, Katayama T, Hoshino KY, Takeuchi S, Niwa S, Kayama Y (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15:663–669. 10.1093/cercor/bhh168 PubMed DOI
Keeley S, Fenton AA, Rinzel J (2016) Modeling fast and slow gamma oscillations with interneurons of different subtype. J Neurophysiol 117:950–965. PubMed PMC
Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8:e1000403. 10.1371/journal.pbio.1000403 PubMed DOI PMC
Kelemen E, Fenton AA (2013) The organization of neuronal discharge on timescales of milliseconds and seconds is related to the spatial response properties of hippocampal neurons In: Advances in Cognitive Neurodynamics III (Yamaguchi Y, ed.). Dordrecht, The Netherlands: Springer.
Kelemen E, Fenton AA (2016) Coordinating different representations in the hippocampus. Neurobiol Learn Mem 129:50–59. 10.1016/j.nlm.2015.12.011 PubMed DOI
Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295. 10.1016/S0896-6273(04)00192-8 PubMed DOI
Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280:2121–2126. 10.1126/science.280.5372.2121 PubMed DOI
Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci U S A 97:32–37. 10.1073/pnas.97.1.32 PubMed DOI PMC
Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ (2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22:1452–1464. 10.1162/jocn.2009.21305 PubMed DOI
Lee H, Dvorak D, Kao HY, Duffy ÁM, Scharfman HE, Fenton AA (2012) Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron 75:714–724. 10.1016/j.neuron.2012.06.016 PubMed DOI PMC
Lee H, Dvorak D, Fenton AA (2014) Targeting neural synchrony deficits is sufficient to improve cognition in a schizophrenia-related neurodevelopmental model. Front Psychiatry 5:15. 10.3389/fpsyt.2014.00015 PubMed DOI PMC
Lever C, Wills T, Cacucci F, Burgess N, O'Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416:90–94. 10.1038/416090a PubMed DOI
Lodge D, Anis NA (1982) Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat. Eur J Pharmacol 77:203–204. 10.1016/0014-2999(82)90022-X PubMed DOI
Ma J, Leung LS (2000) Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 111:1–11. 10.1016/S0166-4328(00)00138-8 PubMed DOI
Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL (2005) Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15:841–852. 10.1002/hipo.20114 PubMed DOI
Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352. 10.1126/science.281.5381.1349 PubMed DOI
Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38:942–949. 10.1093/schbul/sbs075 PubMed DOI PMC
Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927. PubMed PMC
Molina LA, Skelin I, Gruber AJ (2014) Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS One 9:e85842. 10.1371/journal.pone.0085842 PubMed DOI PMC
Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776. 10.1038/319774a0 PubMed DOI
Muller RU, Kubie JL (1989) The firing of hippocampal place cells predicts the future position of freely moving rats. J Neurosci 9:4101–4110. PubMed PMC
Muller RU, Kubie JL, Ranck JB Jr (1987) Spatial firing patterns of hippocampal complex spike cells in a fixed environment. J Neurosci 7:1935–1950. PubMed PMC
Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, Wang XJ (2014) Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex 24:859–872. 10.1093/cercor/bhs370 PubMed DOI PMC
Neymotin SA, Lytton WW, Olypher AV, Fenton AA (2011) Measuring the quality of neuronal identification in ensemble recordings. J Neurosci 31:16398–16409. 10.1523/JNEUROSCI.4053-11.2011 PubMed DOI PMC
Neymotin SA, Talbot ZN, Jung JQ, Fenton AA, Lytton WW (2017) Tracking recurrence of correlation structure in neuronal recordings. J Neurosci Methods 275:1–9. 10.1016/j.jneumeth.2016.10.009 PubMed DOI PMC
Olypher AV, Lánský P, Fenton AA (2002) Properties of the extra-positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing. Neuroscience 111:553–566. 10.1016/S0306-4522(01)00586-3 PubMed DOI
Olypher AV, Lánský P, Muller RU, Fenton AA (2003) Quantifying location-specific information in the discharge of rat hippocampal place cells. J Neurosci Methods 127:123–135. 10.1016/S0165-0270(03)00123-7 PubMed DOI
Olypher AV, Klement D, Fenton AA (2006) Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis. J Neurosci 26:158–168. 10.1523/JNEUROSCI.2064-05.2006 PubMed DOI PMC
O'Reilly KC, Kao HY, Lee H, Fenton AA (2014) Converging on a core cognitive deficit: the impact of various neurodevelopment insults on cognitive control. Front Neurosci 8. PubMed PMC
O'Reilly KC, Perica MI, Fenton AA (2016) Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult. Neurobiol Learn Mem 134:294–303. 10.1016/j.nlm.2016.07.034 PubMed DOI PMC
Park E, Dvorak D, Fenton AA (2011) Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments. PLoS One 6:e22349. 10.1371/journal.pone.0022349 PubMed DOI PMC
Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144. 10.1126/science.1128657 PubMed DOI
Phillips WA, Silverstein SM (2003) Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26:65–82; discussion 82–137. PubMed
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993) Numerical recipes in C: the art of scientific computing, Ed 2 Cambridge: Cambridge University.
Radwan B, Dvorak D, Fenton AA (2016) Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis 88:125–138. 10.1016/j.nbd.2016.01.003 PubMed DOI PMC
Ranck JB., Jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41:461–531. PubMed
Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396. 10.1176/appi.ajp.162.2.394 PubMed DOI
Saucier D, Cain DP (1995) Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378:186–189. 10.1038/378186a0 PubMed DOI
Schneidman E, Berry MJ 2nd, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012. 10.1038/nature04701 PubMed DOI PMC
Schomburg EW, Anastassiou CA, Buzsáki G, Koch C (2012) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32:11798–11811. 10.1523/JNEUROSCI.0656-12.2012 PubMed DOI PMC
Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, Buzsáki G (2014) Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84:470–485. 10.1016/j.neuron.2014.08.051 PubMed DOI PMC
Seeman P, Ko F, Tallerico T (2005) Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry 10:877–883. 10.1038/sj.mp.4001682 PubMed DOI
Sershen H, Balla A, Aspromonte JM, Xie S, Cooper TB, Javitt DC (2008) Characterization of interactions between phencyclidine and amphetamine in rodent prefrontal cortex and striatum: implications in NMDA/glycine-site-mediated dopaminergic dysregulation and dopamine transporter function. Neurochem Int 52:119–129. 10.1016/j.neuint.2007.07.011 PubMed DOI
Skaggs WE, McNaughton BL, Gothard KM, Markus EJ (1993) An information theoretic approach to deciphering the hippocampal code. In: Advances in neural information processing (Hanson SJ, Cowan JD, Giles CL, eds), pp 1030–1037. San Mateo, CA: Morgan Kaufmann.
Szczurowska E, Ahuja N, Jiruška P, Kelemen E, Stuchlík A (2018) Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine. Prog Neuropsychopharmacol Biol Psychiatry. 81:275–283. 10.1016/j.pnpbp.2017.09.013 PubMed DOI
Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Brain Res Rev 31:391–400. 10.1016/S0165-0173(99)00056-9 PubMed DOI
Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A 106:20942–20947. 10.1073/pnas.0911331106 PubMed DOI PMC
Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168. 10.1016/j.neuron.2006.09.020 PubMed DOI
Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9–24. 10.1016/S0924-977X(96)00039-9 PubMed DOI
Wesierska M, Dockery C, Fenton AA (2005) Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J Neurosci 25:2413–2419. 10.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC
Wills TJ, Lever C, Cacucci F, Burgess N, O'Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308:873–876. 10.1126/science.1108905 PubMed DOI PMC
Wood J, Kim Y, Moghaddam B (2012) Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci 32:3022–3031. 10.1523/JNEUROSCI.6377-11.2012 PubMed DOI PMC
Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79:1017–1044. PubMed
Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16:264–266. 10.1038/nn.3329 PubMed DOI PMC