Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27303267
PubMed Central
PMC4881382
DOI
10.3389/fncel.2016.00136
Knihovny.cz E-zdroje
- Klíčová slova
- brain damage, immature rats, mitochondrial dysfunction, oxidative stress, protection, status epilepticus,
- Publikační typ
- časopisecké články MeSH
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Zobrazit více v PubMed
Bindokas V. P., Jordán J., Lee C. C., Miller R. J. (1996). Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci. 16 1324–1336. PubMed PMC
Bruce A. J., Baudry M. (1995). Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic. Biol. Med. 18 993–1002. PubMed
Dobbing J. (1970). “Undernutrition and the developing brain,” in Developmental Neurobiology ed. Himwich W. A. (Springfield, IL: Thomas; ) 241–261.
Fato R., Bergamini C., Leoni S., Strocchi P., Lenaz G. (2008). Generation of reactive oxygen species by mitochondrial complex I: implications in neurodegeneration. Neurochem. Res. 33 2487–2501. 10.1007/s11064-008-9747-0 PubMed DOI
Folbergrová J. (1993). Cerebral energy state of neonatal rats during seizures induced by homocysteine. Physiol. Res. 42 155–160. PubMed
Folbergrová J. (1997). Anticonvulsant action of both NMDA and non-NMDA receptor antagonists against seizures induced by homocysteine in immature rats. Exp. Neurol. 145 442–450. 10.1006/exnr.1997.6464 PubMed DOI
Folbergrová J. (2013). Oxidative stress in immature brain following experimentally-induced seizures. Physiol. Res. 62 S39–S48. PubMed
Folbergrová J., Druga R., Haugvicová R., Mareš P., Otáhal J. (2008). Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 54 665–675. 10.1016/j.neuropharm.2007.11.015 PubMed DOI
Folbergrová J., Druga R., Otáhal J., Haugvicová R., Mareš P., Kubová H. (2005). Seizures induced in immature rats by homocysteic acid and the associated brain damage are prevented by group II metabotropic glutamate receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate. Exp. Neurol. 192 420–436. 10.1016/j.expneurol.2004.12.019 PubMed DOI
Folbergrová J., Druga R., Otáhal J., Haugvicová R., Mareš P., Kubová H. (2006). Effect of free radical spin trap N-tert-butyl-α-phenylnitrone (PBN) on seizures induced in immature rats by homocysteic acid. Exp. Neurol. 201 105–119. 10.1016/j.expneurol.2006.03.031 PubMed DOI
Folbergrová J., Haugvicová R., Mareš P. (2000). Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp. Neurol. 161 336–345. 10.1006/exnr.1999.7264 PubMed DOI
Folbergrová J., Ješina P., Drahota Z., Lisý V., Haugvicová R., Vojtíšková A., et al. (2007). Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp. Neurol. 204 597–609. 10.1016/j.expneurol.2006.12.010 PubMed DOI
Folbergrová J., Ješina P., Haugvicová R., Lisý V., Houštěk J. (2010). Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem. Int. 56 394–403. 10.1016/j.neuint.2009.11.011 PubMed DOI
Folbergrová J., Kunz W. S. (2012). Mitochondrial dysfunction in epilepsy. Mitochondrion 12 35–40. 10.1016/j.mito.2011.04.004 PubMed DOI
Folbergrová J., MacMillan V., Siesjö B. K. (1972). The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH/NAD+ ratio of the rat brain. J. Neurochem. 19 2497–2505. 10.1111/j.1471-4159.1972.tb01309.x PubMed DOI
Folbergrová J., Otáhal J., Druga R. (2011). Effect of Tempol on brain superoxide anion production and neuronal injury associated with seizures in immature rats. Epilepsia 52 51 10.1016/j.expneurol.2011.11.009 DOI
Folbergrová J., Otáhal J., Druga R. (2012). Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp. Neurol. 233 421–429. 10.1016/j.expneurol.2011.11.009 PubMed DOI
Hirsch E., Baram T. Z., Snead O. C. (1992). Ontogenic study of lithium–pilocarpine-induced status epilepticus in rats. Brain Res. 583 120–126. 10.1016/S0006-8993(10)80015-0 PubMed DOI
Jensen F. E. (1999). Acute and chronic effects of seizures in the developing brain: experimental models. Epilepsia 40 S51–S58. 10.1111/j.1528-1157.1999.tb00879.x PubMed DOI
Kalyanaraman B., Dranka B. P., Hardy M., Michalski R., Zielonka J. (2014). HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes-the ultimate approach for intra- and extracellular superoxide detection. Biochim. Biophys. Acta 1840 739–744. 10.1016/j.bbagen.2013.05.008 PubMed DOI PMC
Kann O., Kovács R., Njunting M., Behrens C. J., Otáhal J., Lehmann T. N., et al. (2005). Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128 2396–2407. 10.1093/brain/awh568 PubMed DOI
Kubová H., Druga R., Lukasiuk K., Suchomelová L., Haugvicová R., Jirmanová I., et al. (2001). Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J. Neurosci. 21 3593–3599. PubMed PMC
Kubová H., Mareš P., Suchomelová L., Brožek G., Druga R., Pitkänen A. (2004). Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 19 3255–3265. 10.1111/j.0953-816X.2004.03410.x PubMed DOI
Kudin A. P., Bimpong-Buta N. Y. B., Vielhaber S., Elger C. E., Kunz W. S. (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 4127–4135. 10.1074/jbc.M310341200 PubMed DOI
Kunz W. S., Kudin A. P., Vielhaber S., Blümcke I., Zuschratter W., Schramm J., et al. (2000). Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann. Neurol. 48 766–773. 10.1002/1531-8249(200011)48:5<766::AID-ANA10>3.0.CO;2-M PubMed DOI
Kussmaul L., Hirst J. (2006). The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. U.S.A. 103 7607–7612. 10.1073/pnas.0510977103 PubMed DOI PMC
Lee Y. M., Kang H. C., Lee J. S., Kim S. H., Kim E. Y., Lee S. K., et al. (2008). Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia 49 685–690. 10.1111/j.1528-1167.2007.01522.x PubMed DOI
Liang L. P., Ho Y. S., Patel M. (2000). Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101 563–570. 10.1016/S0306-4522(00)00397-3 PubMed DOI
Liang L. P., Patel M. (2004). Mitochondrial oxidative stress and increased seizure susceptibility in SOD2 (-/+) mice. Free Radic. Biol. Med. 36 542–554. 10.1016/j.freeradbiomed.2003.11.029 PubMed DOI
Lin M. T., Beal M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 787–795. 10.1038/nature05292 PubMed DOI
Lowry O. H., Passonneau J. V. (1972). A Flexible System of Enzymatic Analysis. New York, NY: Academic Press.
Lynch M., Sayin U., Bownds J., Janumpalli S., Sutula T. (2000). Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur. J. Neurosci. 12 2252–2264. 10.1046/j.1460-9568.2000.00117.x PubMed DOI
Marella M., Seo B. B., Matsuno-Yagi A., Yagi T. (2007). Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J. Biol. Chem. 282 24146–24156. 10.1074/jbc.M701819200 PubMed DOI
Nitecka L., Tremblay G., Charton G., Bouillot P., Berger M. L., Ben-Ari Y. (1984). Maturation of kainic acid seizure brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13 1073–1094. PubMed
Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12 913–922. 10.1007/s10495-007-0756-2 PubMed DOI
Parihar M. S., Parihar A., Villamena F. A., Vaccaro P. S., Ghafourifar P. (2008). Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative. Biochem. Biophys. Res. Commun. 367 761–767. 10.1016/j.bbrc.2008.01.015 PubMed DOI
Patel M. (2004). Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic. Biol. Med. 37 951–962. 10.1016/j.freeradbiomed.2004.08.021 PubMed DOI
Patel M., Li Q. Y. (2003). Age dependence of seizure-induced oxidative stress. Neuroscience 118 431–437. 10.1016/S0306-4522(02)00979-X PubMed DOI
Paxinos G., Watson C. (1998). The Rat Brain in Stereotaxic Coordinates. New York: Academic Press.
Perier C., Tieu K., Guégan C., Caspersen C., Jackson-Lewis V., Carelli V. (2005). Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl. Acad. Sci. U.S.A. 102 19126–19131. 10.1073/pnas.0508215102 PubMed DOI PMC
Rowley S., Patel M. (2013). Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62 121–131. 10.1016/j.freeradbiomed.2013.02.002 PubMed DOI PMC
Ryan K., Backos D. S., Reigan P., Patel M. (2012). Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci. 32 11250–11258. 10.1523/JNEUROSCI.0907-12.2012 PubMed DOI PMC
Ryan K., Liang L. P., Rivard C., Patel M. (2014). Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol. Dis. 64 8–15. 10.1016/j.nbd.2013.12.006 PubMed DOI PMC
Sankar R., Shin D. H., Liu H., Mazarati A., Pereira de Vasconcelos A., Wasterlain C. G. (1998). Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J. Neurosci. 18 8382–8393. PubMed PMC
Sipos I., Tretter L., Adam-Vizi V. (2003). Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 84 112–118. 10.1046/j.1471-4159.2003.01513.x PubMed DOI
Sullivan P. G., Dubé C., Dorenbos K., Steward O., Baram T. Z. (2003). Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann. Neurol. 53 711–717. 10.1002/ana.10543 PubMed DOI PMC
Trotti D., Danbolt N. C., Volterra A. (1998). Glutamate transporters are oxidant-vulnerable: molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 19 328–334. 10.1016/S0165-6147(98)01230-9 PubMed DOI
Waldbaum S., Patel M. (2010). Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 88 23–45. 10.1016/j.eplepsyres.2009.09.020 PubMed DOI PMC
Wasterlain C. G., Niquet J., Thompson K. W., Baldwin R., Liu H., Sankar R., et al. (2002). Seizure-induced neuronal death in the immature brain. Prog. Brain Res. 135 335–353. 10.1016/S0079-6123(02)35031-3 PubMed DOI
Zielonka J., Kalyanaraman B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic. Biol. Med. 48 983–1001. 10.1016/j.freeradbiomed.2010.01.028 PubMed DOI PMC
The outcome of early life status epilepticus-lessons from laboratory animals
The effect of sulforaphane on perinatal hypoxic-ischemic brain injury in rats
Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats