Adenosine Kinase Isoforms in the Developing Rat Hippocampus after LiCl/Pilocarpine Status Epilepticus

. 2022 Feb 24 ; 23 (5) : . [epub] 20220224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269653

LiCl/pilocarpine status epilepticus (SE) induced in immature rats leads, after a latent period, to hippocampal hyperexcitability. The excitability may be influenced by adenosine, which exhibits anticonvulsant activity. The concentration of adenosine is regulated by adenosine kinase (ADK) present in two isoforms-ADK-L and ADK-S. The main goal of the study is to elucidate the changes in ADK isoform expression after LiCl/pilocarpine SE and whether potential changes, as well as inhibition of ADK by 5-iodotubercidin (5-ITU), may contribute to changes in hippocampal excitability during brain development. LiCl/pilocarpine SE was elicited in 12-day-old rats. Hippocampal excitability in immature rats was studied by the model of hippocampal afterdischarges (ADs), in which we demonstrated the potential inhibitory effect of 5-ITU. ADs demonstrated significantly decreased hippocampal excitability 3 days after SE induction, whereas significant hyperexcitability after 20 days compared to controls was shown. 5-ITU administration showed its inhibitory effect on the ADs in 32-day-old SE rats compared to SE rats without 5-ITU. Moreover, both ADK isoforms were examined in the immature rat hippocampus. The ADK-L isoform demonstrated significantly decreased expression in 12-day-old SE rats compared to the appropriate naïve rats, whereas increased ADK-S isoform expression was revealed. A decreasing ADK-L/-S ratio showed the declining dominance of ADK-L isoform during early brain development. LiCl/pilocarpine SE increased the excitability of the hippocampus 20 days after SE induction. The ADK inhibitor 5-ITU exhibited anticonvulsant activity at the same age. Age-related differences in hippocampal excitability after SE might correspond to the development of ADK isoform levels in the hippocampus.

Zobrazit více v PubMed

Wiesner J.B., Ugarkar B.G., Castellino A.J., Barankiewicz J., Dumas D.P., Gruber H.E., Foster A.C., Erion M.D. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J. Pharmacol. Exp. Ther. 1999;289:1669–1677. PubMed

Gorter J.A., Van Vliet E.A., Aronica E., Breit T., Rauwerda H., Da Silva F.H.L., Wadman W.J. Potential New Antiepileptogenic Targets Indicated by Microarray Analysis in a Rat Model for Temporal Lobe Epilepsy. J. Neurosci. 2006;26:11083–11110. doi: 10.1523/JNEUROSCI.2766-06.2006. PubMed DOI PMC

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Gaudin A., Lepetre-Mouelhi S., Mougin J., Parrod M., Pieters G., Garcia-Argote S., Loreau O., Goncalves J., Chacun H., Courbebaisse Y., et al. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis. J. Control. Release. 2015;212:50–58. doi: 10.1016/j.jconrel.2015.06.016. PubMed DOI PMC

Fritz H., Hess R. Ossification of the rat and mouse skeleton in the perinatal period. Teratology. 1970;3:331–337. doi: 10.1002/tera.1420030409. PubMed DOI

Dunwiddie T.V., Masino S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 2001;24:31–55. doi: 10.1146/annurev.neuro.24.1.31. PubMed DOI

Fredholm B.B., Chen J.F., Cunha R.A., Svenningsson P., Vaugeois J.M. Adenosine and brain function. Int. Rev. Neurobiol. 2005;63:191–270. doi: 10.1016/S0074-7742(05)63007-3. PubMed DOI

Fredholm B.B., Chen J.F., Masino S.A., Vaugeois J.M. Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 2005;45:385–412. doi: 10.1146/annurev.pharmtox.45.120403.095731. PubMed DOI

Boison D. Adenosine and epilepsy: From therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11:25–36. doi: 10.1177/1073858404269112. PubMed DOI

Cunha R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005;1:111–134. doi: 10.1007/s11302-005-0649-1. PubMed DOI PMC

Lado F.A., Moshe S. How do seizures stop? Epilepsia. 2008;49:1651–1664. doi: 10.1111/j.1528-1167.2008.01669.x. PubMed DOI PMC

Williams M. Purines: From premise to promise. J. Auton. Nerv. Syst. 2000;81:285–288. doi: 10.1016/S0165-1838(00)00153-3. PubMed DOI

Boison D. Adenosine Kinase: Exploitation for Therapeutic Gain. Pharmacol. Rev. 2013;65:906–943. doi: 10.1124/pr.112.006361. PubMed DOI PMC

Park J., Gupta R.S. Adenosine kinase and ribokinase—The RK family of proteins. Cell. Mol. Life Sci. 2008;65:2875–2896. doi: 10.1007/s00018-008-8123-1. PubMed DOI PMC

Fedele D.E., Koch P., Scheurer L., Simpson E., Möhler H., Brüstle O., Boison D. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci. Lett. 2004;370:160–165. doi: 10.1016/j.neulet.2004.08.031. PubMed DOI

Güttinger M., Fedele D., Koch P., Padrun V., Pralong W.F., Brüstle O., Boison D. Suppression of Kindled Seizures by Paracrine Adenosine Release from Stem Cell-Derived Brain Implants. Epilepsia. 2005;46:1162–1169. doi: 10.1111/j.1528-1167.2005.61804.x. PubMed DOI

Huber A., Güttinger M., Möhler H., Boison D. Seizure suppression by adenosine A2A receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci. Lett. 2002;329:289–292. doi: 10.1016/S0304-3940(02)00684-5. PubMed DOI

Pak M., Haas H., Decking U., Schrader J. Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology. 1994;33:1049–1053. doi: 10.1016/0028-3908(94)90142-2. PubMed DOI

Kowaluk E.A., Bhagwat S.S., Jarvis M.F. Adenosine kinase inhibitors. Curr. Pharm. Des. 1998;4:403–416. PubMed

Ugarkar B.G., DaRe J.M., Kopcho J.J., Browne C.E., Schanzer J.M., Wiesner J.B., Erion M.D. Adenosine Kinase Inhibitors. 1. Synthesis, Enzyme Inhibition, and Antiseizure Activity of 5-Iodotubercidin Analogues. J. Med. Chem. 2000;43:2883–2893. doi: 10.1021/jm000024g. PubMed DOI

Boison D. The adenosine kinase hypothesis of epileptogenesis. Prog. Neurobiol. 2008;84:249–262. doi: 10.1016/j.pneurobio.2007.12.002. PubMed DOI PMC

Gouder N., Scheurer L., Fritschy J.-M., Boison D. Overexpression of Adenosine Kinase in Epileptic Hippocampus Contributes to Epileptogenesis. J. Neurosci. 2004;24:692–701. doi: 10.1523/JNEUROSCI.4781-03.2004. PubMed DOI PMC

Cui X.A., Singh B., Park J., Gupta R.S. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus. Biochem. Biophys. Res. Commun. 2009;388:46–50. doi: 10.1016/j.bbrc.2009.07.106. PubMed DOI

Williams-Karnesky R.L., Sandau U.S., Lusardi T., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. PubMed DOI PMC

Kobow K., Blümcke I. The methylation hypothesis: Do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia. 2011;52:15–19. doi: 10.1111/j.1528-1167.2011.03145.x. PubMed DOI

Qureshi I.A., Mehler M.F. Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol. Dis. 2010;39:53–60. doi: 10.1016/j.nbd.2010.02.005. PubMed DOI PMC

Fedele D.E., Gouder N., Güttinger M., Gabernet L., Scheurer L., Rülicke T., Crestani F., Boison D. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain. 2005;128:2383–2395. doi: 10.1093/brain/awh555. PubMed DOI

Studer F., Fedele D., Marowsky A., Schwerdel C., Wernli K., Vogt K., Fritschy J.-M., Boison D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience. 2006;142:125–137. doi: 10.1016/j.neuroscience.2006.06.016. PubMed DOI

Kiese K., Jablonski J., Boison D., Kobow K. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation. Front. Mol. Neurosci. 2016;9:99. doi: 10.3389/fnmol.2016.00099. PubMed DOI PMC

Gebril H.M., Rose R.M., Gesese R., Emond M.P., Huo Y., Aronica E., Boison D. Adenosine kinase inhibition promotes proliferation of neural stem cells after traumatic brain injury. Brain Commun. 2020;2:fcaa017. doi: 10.1093/braincomms/fcaa017. PubMed DOI PMC

Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC

Chauvel P., Landre E., Trottier S., Vignel J.P., Biraben A., Devaux B., Bancaud J. Electrical stimulation with intracerebral electrodes to evoke seizures. Adv. Neurol. 1993;63:115–121. PubMed

Valentin A., Anderson M., Alarcón G., Seoane J.J.G., Selway R., Binnie C.D., Polkey C.E. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain. 2002;125:1709–1718. doi: 10.1093/brain/awf187. PubMed DOI

Kandratavicius L., Balista P.A., Lopes-Aguiar C., Ruggiero R.N., Umeoka E.H., Garcia-Cairasco N., Bueno-Junior L.S., Leite J.P. Animal models of epilepsy: Use and limitations. Neuropsychiatr. Dis. Treat. 2014;10:1693–1705. doi: 10.2147/NDT.S50371. PubMed DOI PMC

Maresova D., Mares P. Hippocampo-cortical after-discharges during ontogenesis in rats. In: Trojan S., Stastny F., editors. Ontogenesis of the Brain. University Carolina Press; Prague, Czech Republic: 1987. pp. 279–283.

Velisek L., Mares P. Hippocampal afterdischarges in rats. I. Effects of antiepileptics. Physiol. Res. 2004;53:453–461. PubMed

Kotloski R., Lynch M., Lauersdorf S., Sutula T. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog. Brain Res. 2002;135:95–110. doi: 10.1016/s0079-6123(02)35010-6. PubMed DOI

Norwood B.A., Bumanglag A.V., Osculati F., Sbarbati A., Marzola P., Nicolato E., Fabene P.F., Sloviter R.S. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single “cryptic” episode of focal hippocampal excitation in awake rats. J. Comp. Neurol. 2010;518:3381–3407. doi: 10.1002/cne.22406. PubMed DOI PMC

Gollwitzer S., Hopfengärtner R., Rössler K., Müller T., Olmes D.G., Lang J., Köhn J., Onugoren M.D., Heyne J., Schwab S., et al. Afterdischarges elicited by cortical electric stimulation in humans: When do they occur and what do they mean? Epilepsy Behav. 2018;87:173–179. doi: 10.1016/j.yebeh.2018.09.007. PubMed DOI

Curia G., Longo D., Biagini G., Jones R.S., Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 2008;172:143–157. doi: 10.1016/j.jneumeth.2008.04.019. PubMed DOI PMC

Kubová H., Mareš P., Suchomelová L., Brožek G., Druga R., Pitkänen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 2004;19:3255–3265. doi: 10.1111/j.0953-816X.2004.03410.x. PubMed DOI

DeLorenzo R., Hauser W.A., Towne A.R., Boggs J.G., Pellock J.M., Penberthy L., Garnett L., Fortner C.A., Ko D. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 1996;46:1029–1035. doi: 10.1212/WNL.46.4.1029. PubMed DOI

Chin R.F., Neville B.G., Peckham C., Bedford H., Wade A., Scott R.C. Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: Prospective population-based study. Lancet. 2006;368:222–229. doi: 10.1016/S0140-6736(06)69043-0. PubMed DOI

Sengupta P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC

Etherington L.-A.V., Patterson G.E., Meechan L., Boison D., Irving A.J., Dale N., Frenguelli B.G. Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology. 2009;56:429–437. doi: 10.1016/j.neuropharm.2008.09.016. PubMed DOI PMC

Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977;83:346–356. doi: 10.1016/0003-2697(77)90043-4. PubMed DOI

Colella A.D., Chegenii N., Tea M.N., Gibbins I.L., Williams K.A., Chataway T.K. Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal. Biochem. 2012;430:108–110. doi: 10.1016/j.ab.2012.08.015. PubMed DOI

Sloviter R.S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann. Neurol. 1994;35:640–654. doi: 10.1002/ana.410350604. PubMed DOI

Dudek F.E., Staley K.J. Seizure probability in animal models of acquired epilepsy: A perspective on the concept of the preictal state. Epilepsy Res. 2011;97:324–331. doi: 10.1016/j.eplepsyres.2011.10.017. PubMed DOI

Löscher W., Hirsch L., Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy—Traditional view versus new concepts. Epilepsy Behav. 2015;52:78–92. doi: 10.1016/j.yebeh.2015.08.037. PubMed DOI

Tsenov G., Mares P. Depression and/or potentiation of cortical responses after status epilepticus in immature rats. Physiol. Res. 2007;56:485–491. doi: 10.33549/physiolres.931047. PubMed DOI

Sankar R., Shin D.H., Liu H., Mazarati A., De Vasconcelos A.P., Wasterlain C.G. Patterns of Status Epilepticus-Induced Neuronal Injury during Development and Long-Term Consequences. J. Neurosci. 1998;18:8382–8393. doi: 10.1523/JNEUROSCI.18-20-08382.1998. PubMed DOI PMC

Chen K., Baram T.Z., Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med. 1999;5:888–894. doi: 10.1038/11330. PubMed DOI PMC

Dube C., Chen K., Eghbal-Ahmadi M., Brunson K., Soltesz I., Baram T.Z. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 2000;47:336–344. doi: 10.1002/1531-8249(200003)47:3<336::AID-ANA9>3.0.CO;2-W. PubMed DOI PMC

Dinocourt C., Petanjek Z., Freund T.F., Ben-Ari Y., Esclapez M. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J. Comp. Neurol. 2003;459:407–425. doi: 10.1002/cne.10622. PubMed DOI

Nairismagi J., Pitkanen A., Kettunen M., Kauppinen R.A., Kubova H. Status Epilepticus in 12-day-old Rats Leads to Temporal Lobe Neurodegeneration and Volume Reduction: A Histologic and MRI Study. Epilepsia. 2006;47:479–488. doi: 10.1111/j.1528-1167.2006.00455.x. PubMed DOI

Scholl E., Dudek F., Ekstrand J. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Neuroscience. 2013;252:45–59. doi: 10.1016/j.neuroscience.2013.07.045. PubMed DOI PMC

Furtado M., Castro O., Del Vecchio F., de Oliveira J.C., Garcia-Cairasco N. Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav. 2011;20:257–266. doi: 10.1016/j.yebeh.2010.11.024. PubMed DOI

Müller C.J., Bankstahl M., Gröticke I., Löscher W. Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. Eur. J. Pharmacol. 2009;619:15–24. doi: 10.1016/j.ejphar.2009.07.020. PubMed DOI

Cavalheiro E.A., Silva D.F., Turski W.A., Calderazzo-Filho L.S., Bortolotto Z.A., Turski L. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev. Brain Res. 1987;37:43–58. doi: 10.1016/0165-3806(87)90227-6. PubMed DOI

Racine R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972;32:281–294. doi: 10.1016/0013-4694(72)90177-0. PubMed DOI

Bragin A., Penttonen M., Buzsaki G. Termination of Epileptic Afterdischarge in the Hippocampus. J. Neurosci. 1997;17:2567–2579. doi: 10.1523/JNEUROSCI.17-07-02567.1997. PubMed DOI PMC

Ekstrand J., Pouliot W., Scheerlinck P., Dudek F. Lithium pilocarpine-induced status epilepticus in postnatal day 20 rats results in greater neuronal injury in ventral versus dorsal hippocampus. Neuroscience. 2011;192:699–707. doi: 10.1016/j.neuroscience.2011.05.022. PubMed DOI PMC

Lynch M., Sayin U., Bownds J., Janumpalli S., Sutula T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur. J. Neurosci. 2000;12:2252–2264. doi: 10.1046/j.1460-9568.2000.00117.x. PubMed DOI

Liu C., Yu T., Ren Z.-W., Xu C.-P., Wang X.-Y., Qiao L., Ni D.-Y., Zhang G.-J., Li Y.-J. Properties of afterdischarges from electrical stimulation in patients with epilepsy. Epilepsy Res. 2017;137:39–44. doi: 10.1016/j.eplepsyres.2017.09.002. PubMed DOI

Dos Santos N.F., Arida R.M., Filho E.M.T., Priel M.R., Cavalheiro E.A. Epileptogenesis in immature rats following recurrent status epilepticus. Brain Res. Rev. 2000;32:269–276. doi: 10.1016/S0165-0173(99)00089-2. PubMed DOI

Baram T.Z., Jensen F.E., Brooks-Kayal A. Does Acquired Epileptogenesis in the Immature Brain Require Neuronal Death? Epilepsy Curr. 2011;11:21–26. doi: 10.5698/1535-7511-11.1.21. PubMed DOI PMC

Brandt C., Potschka H., Löscher W., Ebert U. N-methyl-d-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience. 2003;118:727–740. doi: 10.1016/S0306-4522(03)00027-7. PubMed DOI

Zhang G., Raol Y.S.H., Hsu F.-C., Brooks-Kayal A.R. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J. Neurochem. 2003;88:91–101. doi: 10.1046/j.1471-4159.2003.02124.x. PubMed DOI

Sankar R., Shin N., Liu H., Katsumori H., Wasterlain C.G. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia. 2000;41:S53–S56. doi: 10.1111/j.1528-1157.2000.tb01557.x. PubMed DOI

Folbergrova J., Jesina P., Kubova H., Druga R., Otahal J. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front. Cell. Neurosci. 2016;10:136. doi: 10.3389/fncel.2016.00136. PubMed DOI PMC

Vizuete A.F.K., Hennemann M.M., Gonçalves C.A., De Oliveira D.L. Phase-Dependent Astroglial Alterations in Li–Pilocarpine-Induced Status Epilepticus in Young Rats. Neurochem. Res. 2017;42:2730–2742. doi: 10.1007/s11064-017-2276-y. PubMed DOI

Klein P., Dingledine R., Aronica E., Bernard C., Blümcke I., Boison D., Brodie M.J., Brooks-Kayal A.R., Engel J., Jr., Forcelli P.A., et al. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia. 2018;59:37–66. doi: 10.1111/epi.13965. PubMed DOI PMC

Rizzi M., Perego C., Aliprandi M., Richichi C., Ravizza T., Colella D., Velískǒvá J., Moshe S., de Simoni M.G., Vezzani A. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol. Dis. 2003;14:494–503. doi: 10.1016/j.nbd.2003.08.001. PubMed DOI

Sofroniew M.V., Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. PubMed DOI PMC

Vezzani A. Epileptogenic Role of Astrocyte Dysfunction. Epilepsy Curr. 2008;8:46–47. doi: 10.1111/j.1535-7511.2008.00233.x. PubMed DOI PMC

Boison D., Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–1243. doi: 10.1002/glia.23247. PubMed DOI PMC

George B., Kulkarni S.K. Modulation of lithium-pilocarpine-induced status epilepticus by adenosinergic agents. Methods Find. Exp. Clin. Pharmacol. 1997;19:329–333. PubMed

Khan G.M., Smolders I., Ebinger G., Michotte Y. Anticonvulsant effect and neurotransmitter modulation of focal and systemic 2-chloroadenosine against the development of pilocarpine-induced seizures. Neuropharmacology. 2000;39:2418–2432. doi: 10.1016/S0028-3908(00)00072-1. PubMed DOI

Boison D. Adenosine kinase, epilepsy and stroke: Mechanisms and therapies. Trends Pharmacol. Sci. 2006;27:652–658. doi: 10.1016/j.tips.2006.10.008. PubMed DOI

Li T., Lan J.Q., Fredholm B.B., Simon R.P., Boison D. Adenosine dysfunction in astrogliosis: Cause for seizure generation? Neuron Glia Biol. 2007;3:353–366. doi: 10.1017/S1740925X0800015X. PubMed DOI PMC

Theofilas P., Brar S., Stewart K.-A., Shen H.-Y., Sandau U.S., Poulsen D., Boison D. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia. 2011;52:589–601. doi: 10.1111/j.1528-1167.2010.02947.x. PubMed DOI PMC

Veliskova J., Velisek L., Mares P. Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol. Bohemoslov. 1988;37:395–405. PubMed

Aronica E., Zurolo E., Iyer A., de Groot M., Anink J., Carbonell C., van Vliet E.A., Baayen J.C., Boison D., Gorter J.A. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia. 2011;52:1645–1655. doi: 10.1111/j.1528-1167.2011.03115.x. PubMed DOI PMC

Boison D., Chen J.-F., Fredholm B.B. Adenosine signaling and function in glial cells. Cell Death Differ. 2009;17:1071–1082. doi: 10.1038/cdd.2009.131. PubMed DOI PMC

Frush D., McNamara J. Evidence implicating dentate granule cells in wet dog shakes produced by kindling stimulations of entorhinal cortex. Exp. Neurol. 1986;92:102–113. doi: 10.1016/0014-4886(86)90128-7. PubMed DOI

Pignataro G., Maysami S., Studer F.E., Wilz A., Simon R.P., Boison D. Downregulation of Hippocampal Adenosine Kinase after Focal Ischemia as Potential Endogenous Neuroprotective Mechanism. J. Cereb. Blood Flow Metab. 2007;28:17–23. doi: 10.1038/sj.jcbfm.9600499. PubMed DOI

Miller-Delaney S.F.C., Das S., Sano T., Jimenez-Mateos E.M., Bryan K., Buckley P.G., Stallings R.L., Henshall D.C. Differential DNA Methylation Patterns Define Status Epilepticus and Epileptic Tolerance. J. Neurosci. 2012;32:1577–1588. doi: 10.1523/JNEUROSCI.5180-11.2012. PubMed DOI PMC

Zang G., Franklin P.H., Murray T.F. Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J. Pharmacol. Exp. Ther. 1993;264:1415–1424. PubMed

Jarvis M.F. Therapeutic potential of adenosine kinase inhibition—Revisited. Pharmacol. Res. Perspect. 2019;7:e00506. doi: 10.1002/prp2.506. PubMed DOI PMC

Lietsche J., Imran I., Klein J. Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats. Neurosci. Lett. 2016;611:69–73. doi: 10.1016/j.neulet.2015.11.028. PubMed DOI

Pazzagli M., Corsi C., Fratti S., Pedata F., Pepeu G. Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res. 1995;684:103–106. doi: 10.1016/0006-8993(95)00471-2. PubMed DOI

Sandau U.S., Yahya M., Bigej R., Friedman J.L., Saleumvong B., Boison D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia. 2019;60:615–625. doi: 10.1111/epi.14674. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...