Adenosine Kinase Isoforms in the Developing Rat Hippocampus after LiCl/Pilocarpine Status Epilepticus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35269653
PubMed Central
PMC8910300
DOI
10.3390/ijms23052510
PII: ijms23052510
Knihovny.cz E-zdroje
- Klíčová slova
- LiCl/pilocarpine, adenosine kinase, development, epileptic afterdischarges, hippocampus, inhibitor, isoforms, rat, status epilepticus,
- MeSH
- adenosin metabolismus MeSH
- adenosinkinasa metabolismus MeSH
- antikonvulziva farmakologie MeSH
- hipokampus metabolismus MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- pilokarpin * toxicita MeSH
- protein - isoformy metabolismus MeSH
- status epilepticus * chemicky indukované farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin MeSH
- adenosinkinasa MeSH
- antikonvulziva MeSH
- pilokarpin * MeSH
- protein - isoformy MeSH
LiCl/pilocarpine status epilepticus (SE) induced in immature rats leads, after a latent period, to hippocampal hyperexcitability. The excitability may be influenced by adenosine, which exhibits anticonvulsant activity. The concentration of adenosine is regulated by adenosine kinase (ADK) present in two isoforms-ADK-L and ADK-S. The main goal of the study is to elucidate the changes in ADK isoform expression after LiCl/pilocarpine SE and whether potential changes, as well as inhibition of ADK by 5-iodotubercidin (5-ITU), may contribute to changes in hippocampal excitability during brain development. LiCl/pilocarpine SE was elicited in 12-day-old rats. Hippocampal excitability in immature rats was studied by the model of hippocampal afterdischarges (ADs), in which we demonstrated the potential inhibitory effect of 5-ITU. ADs demonstrated significantly decreased hippocampal excitability 3 days after SE induction, whereas significant hyperexcitability after 20 days compared to controls was shown. 5-ITU administration showed its inhibitory effect on the ADs in 32-day-old SE rats compared to SE rats without 5-ITU. Moreover, both ADK isoforms were examined in the immature rat hippocampus. The ADK-L isoform demonstrated significantly decreased expression in 12-day-old SE rats compared to the appropriate naïve rats, whereas increased ADK-S isoform expression was revealed. A decreasing ADK-L/-S ratio showed the declining dominance of ADK-L isoform during early brain development. LiCl/pilocarpine SE increased the excitability of the hippocampus 20 days after SE induction. The ADK inhibitor 5-ITU exhibited anticonvulsant activity at the same age. Age-related differences in hippocampal excitability after SE might correspond to the development of ADK isoform levels in the hippocampus.
Zobrazit více v PubMed
Wiesner J.B., Ugarkar B.G., Castellino A.J., Barankiewicz J., Dumas D.P., Gruber H.E., Foster A.C., Erion M.D. Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J. Pharmacol. Exp. Ther. 1999;289:1669–1677. PubMed
Gorter J.A., Van Vliet E.A., Aronica E., Breit T., Rauwerda H., Da Silva F.H.L., Wadman W.J. Potential New Antiepileptogenic Targets Indicated by Microarray Analysis in a Rat Model for Temporal Lobe Epilepsy. J. Neurosci. 2006;26:11083–11110. doi: 10.1523/JNEUROSCI.2766-06.2006. PubMed DOI PMC
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Gaudin A., Lepetre-Mouelhi S., Mougin J., Parrod M., Pieters G., Garcia-Argote S., Loreau O., Goncalves J., Chacun H., Courbebaisse Y., et al. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis. J. Control. Release. 2015;212:50–58. doi: 10.1016/j.jconrel.2015.06.016. PubMed DOI PMC
Fritz H., Hess R. Ossification of the rat and mouse skeleton in the perinatal period. Teratology. 1970;3:331–337. doi: 10.1002/tera.1420030409. PubMed DOI
Dunwiddie T.V., Masino S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 2001;24:31–55. doi: 10.1146/annurev.neuro.24.1.31. PubMed DOI
Fredholm B.B., Chen J.F., Cunha R.A., Svenningsson P., Vaugeois J.M. Adenosine and brain function. Int. Rev. Neurobiol. 2005;63:191–270. doi: 10.1016/S0074-7742(05)63007-3. PubMed DOI
Fredholm B.B., Chen J.F., Masino S.A., Vaugeois J.M. Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 2005;45:385–412. doi: 10.1146/annurev.pharmtox.45.120403.095731. PubMed DOI
Boison D. Adenosine and epilepsy: From therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11:25–36. doi: 10.1177/1073858404269112. PubMed DOI
Cunha R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005;1:111–134. doi: 10.1007/s11302-005-0649-1. PubMed DOI PMC
Lado F.A., Moshe S. How do seizures stop? Epilepsia. 2008;49:1651–1664. doi: 10.1111/j.1528-1167.2008.01669.x. PubMed DOI PMC
Williams M. Purines: From premise to promise. J. Auton. Nerv. Syst. 2000;81:285–288. doi: 10.1016/S0165-1838(00)00153-3. PubMed DOI
Boison D. Adenosine Kinase: Exploitation for Therapeutic Gain. Pharmacol. Rev. 2013;65:906–943. doi: 10.1124/pr.112.006361. PubMed DOI PMC
Park J., Gupta R.S. Adenosine kinase and ribokinase—The RK family of proteins. Cell. Mol. Life Sci. 2008;65:2875–2896. doi: 10.1007/s00018-008-8123-1. PubMed DOI PMC
Fedele D.E., Koch P., Scheurer L., Simpson E., Möhler H., Brüstle O., Boison D. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci. Lett. 2004;370:160–165. doi: 10.1016/j.neulet.2004.08.031. PubMed DOI
Güttinger M., Fedele D., Koch P., Padrun V., Pralong W.F., Brüstle O., Boison D. Suppression of Kindled Seizures by Paracrine Adenosine Release from Stem Cell-Derived Brain Implants. Epilepsia. 2005;46:1162–1169. doi: 10.1111/j.1528-1167.2005.61804.x. PubMed DOI
Huber A., Güttinger M., Möhler H., Boison D. Seizure suppression by adenosine A2A receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci. Lett. 2002;329:289–292. doi: 10.1016/S0304-3940(02)00684-5. PubMed DOI
Pak M., Haas H., Decking U., Schrader J. Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology. 1994;33:1049–1053. doi: 10.1016/0028-3908(94)90142-2. PubMed DOI
Kowaluk E.A., Bhagwat S.S., Jarvis M.F. Adenosine kinase inhibitors. Curr. Pharm. Des. 1998;4:403–416. PubMed
Ugarkar B.G., DaRe J.M., Kopcho J.J., Browne C.E., Schanzer J.M., Wiesner J.B., Erion M.D. Adenosine Kinase Inhibitors. 1. Synthesis, Enzyme Inhibition, and Antiseizure Activity of 5-Iodotubercidin Analogues. J. Med. Chem. 2000;43:2883–2893. doi: 10.1021/jm000024g. PubMed DOI
Boison D. The adenosine kinase hypothesis of epileptogenesis. Prog. Neurobiol. 2008;84:249–262. doi: 10.1016/j.pneurobio.2007.12.002. PubMed DOI PMC
Gouder N., Scheurer L., Fritschy J.-M., Boison D. Overexpression of Adenosine Kinase in Epileptic Hippocampus Contributes to Epileptogenesis. J. Neurosci. 2004;24:692–701. doi: 10.1523/JNEUROSCI.4781-03.2004. PubMed DOI PMC
Cui X.A., Singh B., Park J., Gupta R.S. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus. Biochem. Biophys. Res. Commun. 2009;388:46–50. doi: 10.1016/j.bbrc.2009.07.106. PubMed DOI
Williams-Karnesky R.L., Sandau U.S., Lusardi T., Lytle N.K., Farrell J.M., Pritchard E.M., Kaplan D.L., Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 2013;123:3552–3563. doi: 10.1172/JCI65636. PubMed DOI PMC
Kobow K., Blümcke I. The methylation hypothesis: Do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia. 2011;52:15–19. doi: 10.1111/j.1528-1167.2011.03145.x. PubMed DOI
Qureshi I.A., Mehler M.F. Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol. Dis. 2010;39:53–60. doi: 10.1016/j.nbd.2010.02.005. PubMed DOI PMC
Fedele D.E., Gouder N., Güttinger M., Gabernet L., Scheurer L., Rülicke T., Crestani F., Boison D. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain. 2005;128:2383–2395. doi: 10.1093/brain/awh555. PubMed DOI
Studer F., Fedele D., Marowsky A., Schwerdel C., Wernli K., Vogt K., Fritschy J.-M., Boison D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience. 2006;142:125–137. doi: 10.1016/j.neuroscience.2006.06.016. PubMed DOI
Kiese K., Jablonski J., Boison D., Kobow K. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation. Front. Mol. Neurosci. 2016;9:99. doi: 10.3389/fnmol.2016.00099. PubMed DOI PMC
Gebril H.M., Rose R.M., Gesese R., Emond M.P., Huo Y., Aronica E., Boison D. Adenosine kinase inhibition promotes proliferation of neural stem cells after traumatic brain injury. Brain Commun. 2020;2:fcaa017. doi: 10.1093/braincomms/fcaa017. PubMed DOI PMC
Semple B.D., Blomgren K., Gimlin K., Ferriero D.M., Noble-Haeusslein L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC
Chauvel P., Landre E., Trottier S., Vignel J.P., Biraben A., Devaux B., Bancaud J. Electrical stimulation with intracerebral electrodes to evoke seizures. Adv. Neurol. 1993;63:115–121. PubMed
Valentin A., Anderson M., Alarcón G., Seoane J.J.G., Selway R., Binnie C.D., Polkey C.E. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain. 2002;125:1709–1718. doi: 10.1093/brain/awf187. PubMed DOI
Kandratavicius L., Balista P.A., Lopes-Aguiar C., Ruggiero R.N., Umeoka E.H., Garcia-Cairasco N., Bueno-Junior L.S., Leite J.P. Animal models of epilepsy: Use and limitations. Neuropsychiatr. Dis. Treat. 2014;10:1693–1705. doi: 10.2147/NDT.S50371. PubMed DOI PMC
Maresova D., Mares P. Hippocampo-cortical after-discharges during ontogenesis in rats. In: Trojan S., Stastny F., editors. Ontogenesis of the Brain. University Carolina Press; Prague, Czech Republic: 1987. pp. 279–283.
Velisek L., Mares P. Hippocampal afterdischarges in rats. I. Effects of antiepileptics. Physiol. Res. 2004;53:453–461. PubMed
Kotloski R., Lynch M., Lauersdorf S., Sutula T. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog. Brain Res. 2002;135:95–110. doi: 10.1016/s0079-6123(02)35010-6. PubMed DOI
Norwood B.A., Bumanglag A.V., Osculati F., Sbarbati A., Marzola P., Nicolato E., Fabene P.F., Sloviter R.S. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single “cryptic” episode of focal hippocampal excitation in awake rats. J. Comp. Neurol. 2010;518:3381–3407. doi: 10.1002/cne.22406. PubMed DOI PMC
Gollwitzer S., Hopfengärtner R., Rössler K., Müller T., Olmes D.G., Lang J., Köhn J., Onugoren M.D., Heyne J., Schwab S., et al. Afterdischarges elicited by cortical electric stimulation in humans: When do they occur and what do they mean? Epilepsy Behav. 2018;87:173–179. doi: 10.1016/j.yebeh.2018.09.007. PubMed DOI
Curia G., Longo D., Biagini G., Jones R.S., Avoli M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods. 2008;172:143–157. doi: 10.1016/j.jneumeth.2008.04.019. PubMed DOI PMC
Kubová H., Mareš P., Suchomelová L., Brožek G., Druga R., Pitkänen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 2004;19:3255–3265. doi: 10.1111/j.0953-816X.2004.03410.x. PubMed DOI
DeLorenzo R., Hauser W.A., Towne A.R., Boggs J.G., Pellock J.M., Penberthy L., Garnett L., Fortner C.A., Ko D. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 1996;46:1029–1035. doi: 10.1212/WNL.46.4.1029. PubMed DOI
Chin R.F., Neville B.G., Peckham C., Bedford H., Wade A., Scott R.C. Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: Prospective population-based study. Lancet. 2006;368:222–229. doi: 10.1016/S0140-6736(06)69043-0. PubMed DOI
Sengupta P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC
Etherington L.-A.V., Patterson G.E., Meechan L., Boison D., Irving A.J., Dale N., Frenguelli B.G. Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology. 2009;56:429–437. doi: 10.1016/j.neuropharm.2008.09.016. PubMed DOI PMC
Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977;83:346–356. doi: 10.1016/0003-2697(77)90043-4. PubMed DOI
Colella A.D., Chegenii N., Tea M.N., Gibbins I.L., Williams K.A., Chataway T.K. Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal. Biochem. 2012;430:108–110. doi: 10.1016/j.ab.2012.08.015. PubMed DOI
Sloviter R.S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann. Neurol. 1994;35:640–654. doi: 10.1002/ana.410350604. PubMed DOI
Dudek F.E., Staley K.J. Seizure probability in animal models of acquired epilepsy: A perspective on the concept of the preictal state. Epilepsy Res. 2011;97:324–331. doi: 10.1016/j.eplepsyres.2011.10.017. PubMed DOI
Löscher W., Hirsch L., Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy—Traditional view versus new concepts. Epilepsy Behav. 2015;52:78–92. doi: 10.1016/j.yebeh.2015.08.037. PubMed DOI
Tsenov G., Mares P. Depression and/or potentiation of cortical responses after status epilepticus in immature rats. Physiol. Res. 2007;56:485–491. doi: 10.33549/physiolres.931047. PubMed DOI
Sankar R., Shin D.H., Liu H., Mazarati A., De Vasconcelos A.P., Wasterlain C.G. Patterns of Status Epilepticus-Induced Neuronal Injury during Development and Long-Term Consequences. J. Neurosci. 1998;18:8382–8393. doi: 10.1523/JNEUROSCI.18-20-08382.1998. PubMed DOI PMC
Chen K., Baram T.Z., Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med. 1999;5:888–894. doi: 10.1038/11330. PubMed DOI PMC
Dube C., Chen K., Eghbal-Ahmadi M., Brunson K., Soltesz I., Baram T.Z. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 2000;47:336–344. doi: 10.1002/1531-8249(200003)47:3<336::AID-ANA9>3.0.CO;2-W. PubMed DOI PMC
Dinocourt C., Petanjek Z., Freund T.F., Ben-Ari Y., Esclapez M. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J. Comp. Neurol. 2003;459:407–425. doi: 10.1002/cne.10622. PubMed DOI
Nairismagi J., Pitkanen A., Kettunen M., Kauppinen R.A., Kubova H. Status Epilepticus in 12-day-old Rats Leads to Temporal Lobe Neurodegeneration and Volume Reduction: A Histologic and MRI Study. Epilepsia. 2006;47:479–488. doi: 10.1111/j.1528-1167.2006.00455.x. PubMed DOI
Scholl E., Dudek F., Ekstrand J. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Neuroscience. 2013;252:45–59. doi: 10.1016/j.neuroscience.2013.07.045. PubMed DOI PMC
Furtado M., Castro O., Del Vecchio F., de Oliveira J.C., Garcia-Cairasco N. Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav. 2011;20:257–266. doi: 10.1016/j.yebeh.2010.11.024. PubMed DOI
Müller C.J., Bankstahl M., Gröticke I., Löscher W. Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. Eur. J. Pharmacol. 2009;619:15–24. doi: 10.1016/j.ejphar.2009.07.020. PubMed DOI
Cavalheiro E.A., Silva D.F., Turski W.A., Calderazzo-Filho L.S., Bortolotto Z.A., Turski L. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Dev. Brain Res. 1987;37:43–58. doi: 10.1016/0165-3806(87)90227-6. PubMed DOI
Racine R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972;32:281–294. doi: 10.1016/0013-4694(72)90177-0. PubMed DOI
Bragin A., Penttonen M., Buzsaki G. Termination of Epileptic Afterdischarge in the Hippocampus. J. Neurosci. 1997;17:2567–2579. doi: 10.1523/JNEUROSCI.17-07-02567.1997. PubMed DOI PMC
Ekstrand J., Pouliot W., Scheerlinck P., Dudek F. Lithium pilocarpine-induced status epilepticus in postnatal day 20 rats results in greater neuronal injury in ventral versus dorsal hippocampus. Neuroscience. 2011;192:699–707. doi: 10.1016/j.neuroscience.2011.05.022. PubMed DOI PMC
Lynch M., Sayin U., Bownds J., Janumpalli S., Sutula T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur. J. Neurosci. 2000;12:2252–2264. doi: 10.1046/j.1460-9568.2000.00117.x. PubMed DOI
Liu C., Yu T., Ren Z.-W., Xu C.-P., Wang X.-Y., Qiao L., Ni D.-Y., Zhang G.-J., Li Y.-J. Properties of afterdischarges from electrical stimulation in patients with epilepsy. Epilepsy Res. 2017;137:39–44. doi: 10.1016/j.eplepsyres.2017.09.002. PubMed DOI
Dos Santos N.F., Arida R.M., Filho E.M.T., Priel M.R., Cavalheiro E.A. Epileptogenesis in immature rats following recurrent status epilepticus. Brain Res. Rev. 2000;32:269–276. doi: 10.1016/S0165-0173(99)00089-2. PubMed DOI
Baram T.Z., Jensen F.E., Brooks-Kayal A. Does Acquired Epileptogenesis in the Immature Brain Require Neuronal Death? Epilepsy Curr. 2011;11:21–26. doi: 10.5698/1535-7511-11.1.21. PubMed DOI PMC
Brandt C., Potschka H., Löscher W., Ebert U. N-methyl-d-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience. 2003;118:727–740. doi: 10.1016/S0306-4522(03)00027-7. PubMed DOI
Zhang G., Raol Y.S.H., Hsu F.-C., Brooks-Kayal A.R. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J. Neurochem. 2003;88:91–101. doi: 10.1046/j.1471-4159.2003.02124.x. PubMed DOI
Sankar R., Shin N., Liu H., Katsumori H., Wasterlain C.G. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia. 2000;41:S53–S56. doi: 10.1111/j.1528-1157.2000.tb01557.x. PubMed DOI
Folbergrova J., Jesina P., Kubova H., Druga R., Otahal J. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front. Cell. Neurosci. 2016;10:136. doi: 10.3389/fncel.2016.00136. PubMed DOI PMC
Vizuete A.F.K., Hennemann M.M., Gonçalves C.A., De Oliveira D.L. Phase-Dependent Astroglial Alterations in Li–Pilocarpine-Induced Status Epilepticus in Young Rats. Neurochem. Res. 2017;42:2730–2742. doi: 10.1007/s11064-017-2276-y. PubMed DOI
Klein P., Dingledine R., Aronica E., Bernard C., Blümcke I., Boison D., Brodie M.J., Brooks-Kayal A.R., Engel J., Jr., Forcelli P.A., et al. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia. 2018;59:37–66. doi: 10.1111/epi.13965. PubMed DOI PMC
Rizzi M., Perego C., Aliprandi M., Richichi C., Ravizza T., Colella D., Velískǒvá J., Moshe S., de Simoni M.G., Vezzani A. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol. Dis. 2003;14:494–503. doi: 10.1016/j.nbd.2003.08.001. PubMed DOI
Sofroniew M.V., Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. PubMed DOI PMC
Vezzani A. Epileptogenic Role of Astrocyte Dysfunction. Epilepsy Curr. 2008;8:46–47. doi: 10.1111/j.1535-7511.2008.00233.x. PubMed DOI PMC
Boison D., Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–1243. doi: 10.1002/glia.23247. PubMed DOI PMC
George B., Kulkarni S.K. Modulation of lithium-pilocarpine-induced status epilepticus by adenosinergic agents. Methods Find. Exp. Clin. Pharmacol. 1997;19:329–333. PubMed
Khan G.M., Smolders I., Ebinger G., Michotte Y. Anticonvulsant effect and neurotransmitter modulation of focal and systemic 2-chloroadenosine against the development of pilocarpine-induced seizures. Neuropharmacology. 2000;39:2418–2432. doi: 10.1016/S0028-3908(00)00072-1. PubMed DOI
Boison D. Adenosine kinase, epilepsy and stroke: Mechanisms and therapies. Trends Pharmacol. Sci. 2006;27:652–658. doi: 10.1016/j.tips.2006.10.008. PubMed DOI
Li T., Lan J.Q., Fredholm B.B., Simon R.P., Boison D. Adenosine dysfunction in astrogliosis: Cause for seizure generation? Neuron Glia Biol. 2007;3:353–366. doi: 10.1017/S1740925X0800015X. PubMed DOI PMC
Theofilas P., Brar S., Stewart K.-A., Shen H.-Y., Sandau U.S., Poulsen D., Boison D. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia. 2011;52:589–601. doi: 10.1111/j.1528-1167.2010.02947.x. PubMed DOI PMC
Veliskova J., Velisek L., Mares P. Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol. Bohemoslov. 1988;37:395–405. PubMed
Aronica E., Zurolo E., Iyer A., de Groot M., Anink J., Carbonell C., van Vliet E.A., Baayen J.C., Boison D., Gorter J.A. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia. 2011;52:1645–1655. doi: 10.1111/j.1528-1167.2011.03115.x. PubMed DOI PMC
Boison D., Chen J.-F., Fredholm B.B. Adenosine signaling and function in glial cells. Cell Death Differ. 2009;17:1071–1082. doi: 10.1038/cdd.2009.131. PubMed DOI PMC
Frush D., McNamara J. Evidence implicating dentate granule cells in wet dog shakes produced by kindling stimulations of entorhinal cortex. Exp. Neurol. 1986;92:102–113. doi: 10.1016/0014-4886(86)90128-7. PubMed DOI
Pignataro G., Maysami S., Studer F.E., Wilz A., Simon R.P., Boison D. Downregulation of Hippocampal Adenosine Kinase after Focal Ischemia as Potential Endogenous Neuroprotective Mechanism. J. Cereb. Blood Flow Metab. 2007;28:17–23. doi: 10.1038/sj.jcbfm.9600499. PubMed DOI
Miller-Delaney S.F.C., Das S., Sano T., Jimenez-Mateos E.M., Bryan K., Buckley P.G., Stallings R.L., Henshall D.C. Differential DNA Methylation Patterns Define Status Epilepticus and Epileptic Tolerance. J. Neurosci. 2012;32:1577–1588. doi: 10.1523/JNEUROSCI.5180-11.2012. PubMed DOI PMC
Zang G., Franklin P.H., Murray T.F. Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J. Pharmacol. Exp. Ther. 1993;264:1415–1424. PubMed
Jarvis M.F. Therapeutic potential of adenosine kinase inhibition—Revisited. Pharmacol. Res. Perspect. 2019;7:e00506. doi: 10.1002/prp2.506. PubMed DOI PMC
Lietsche J., Imran I., Klein J. Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats. Neurosci. Lett. 2016;611:69–73. doi: 10.1016/j.neulet.2015.11.028. PubMed DOI
Pazzagli M., Corsi C., Fratti S., Pedata F., Pepeu G. Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res. 1995;684:103–106. doi: 10.1016/0006-8993(95)00471-2. PubMed DOI
Sandau U.S., Yahya M., Bigej R., Friedman J.L., Saleumvong B., Boison D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia. 2019;60:615–625. doi: 10.1111/epi.14674. PubMed DOI PMC
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague