Protective Effect of Sulforaphane on Oxidative Stress and Mitochondrial Dysfunction Associated with Status Epilepticus in Immature Rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-07908S
Grantová Agentura České Republiky
22-28265S
Grantová Agentura České Republiky
21-17564S
Grantová Agentura České Republiky
PubMed
36598650
PubMed Central
PMC9984354
DOI
10.1007/s12035-022-03201-x
PII: 10.1007/s12035-022-03201-x
Knihovny.cz E-zdroje
- Klíčová slova
- Immature rats, Mitochondrial dysfunction, Oxidative stress, Protection, Status epilepticus, Sulforaphane,
- MeSH
- faktor 2 související s NF-E2 * metabolismus MeSH
- isothiokyanatany farmakologie MeSH
- KEAP-1 metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondrie metabolismus MeSH
- oxidační stres MeSH
- status epilepticus * metabolismus MeSH
- sulfoxidy metabolismus farmakologie MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 2 související s NF-E2 * MeSH
- isothiokyanatany MeSH
- KEAP-1 MeSH
- sulforaphane MeSH Prohlížeč
- sulfoxidy MeSH
- superoxidy MeSH
The present study aimed to elucidate the effect of sulforaphane (a natural isothiocyanate) on oxidative stress and mitochondrial dysfunction during and at selected periods following status epilepticus (SE) induced in immature 12-day-old rats by Li-pilocarpine. Dihydroethidium was employed for the detection of superoxide anions, immunoblot analyses for 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) levels and respiratory chain complex I activity for evaluation of mitochondrial function. Sulforaphane was given i.p. in two doses (5 mg/kg each), at PD 10 and PD 11, respectively. The findings of the present study indicate that both the acute phase of SE and the early period of epileptogenesis (1 week and 3 weeks following SE induction) are associated with oxidative stress (documented by the enhanced superoxide anion production and the increased levels of 3-NT and 4-HNE) and the persisting deficiency of complex I activity. Pretreatment with sulforaphane either completely prevented or significantly reduced markers of both oxidative stress and mitochondrial dysfunction. Since sulforaphane had no direct anti-seizure effect, the findings suggest that the ability of sulforaphane to activate Nrf2 is most likely responsible for the observed protective effect. Nrf2-ARE signaling pathway can be considered a promising target for novel therapies of epilepsy, particularly when new compounds, possessing inhibitory activity against protein-protein interaction between Nrf2 and its repressor protein Keap1, with less "off-target" effects and, importantly, with an optimal permeability and bioavailability properties, become available commercially.
Zobrazit více v PubMed
Lynch M, Sayin U, Bownds J, Janumpalli S, Sutula T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci. 2000;12:2252–2264. doi: 10.1046/j.1460-9568.2000.00117.x. PubMed DOI
Kubová H, Mareš P, Suchomelová L, Brožek G, Druga R, Pitkänen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci. 2004;19(12):3255–3265. doi: 10.1111/j.0953-816X.2004.03410.x. PubMed DOI
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–638. doi: 10.1124/pr.120.019539. PubMed DOI PMC
Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88(1):23–45. doi: 10.1016/j.epilepsyres.2009.09.020. PubMed DOI PMC
Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, Hong J-S, et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122–137. doi: 10.1016/j.neuint.2011.03.025. PubMed DOI PMC
Folbergrová J, Kunz WS. Mitochondrial dysfunction in epilepsy. Mitochondrion. 2012;12(1):35–40. doi: 10.1016/j.mito.2011.04.004. PubMed DOI
Liang LP, Waldbaum S, Rwley S, Huang TT, Day BJ, Patel M. Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis. 2012;45(3):1068–1076. doi: 10.1016/j.nbd.2011.12.025. PubMed DOI PMC
Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. 2013;62:121–131. doi: 10.1016/j.freeradbiomed2013.02.002. PubMed DOI PMC
Williams S, Hamil N, Abramov AY, Walker MC, Kovac S. Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience. 2015;303:160–165. doi: 10.1016/j.neuroscience.201507.005. PubMed DOI
Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci. 2017;18(11):2365. doi: 10.3390/ijms18112365. PubMed DOI PMC
Shekh-Ahmad T, Kovac S, Abramov AY, Walker MC. Reactive oxygen species in status epilepticus. Epilepsy Behav. 2019;101:106410. doi: 10.1016/j.yebeh.201907.011. PubMed DOI
Folbergrová J, Druga R, Otáhal J, Haugvicová R, Mareš P, Kubová H. Effect of free radical spin trap N-tert-butyl-α-phenylnitrone (PBN) on seizures induced in immature rats by homocysteic acid. Exp Neurol. 2006;201(1):105–119. doi: 10.1016/j.expneurol.2006.03.031. PubMed DOI
Folbergrová J, Otáhal J, Druga R. Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. ExpNeurol. 2012;233(1):421–429. doi: 10.1016/j.expneurol.2011.11.009. PubMed DOI
Folbergrová J. Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res. 2013;62(Suppl. 1):S39–S48. doi: 10.33549/physiolres.932613. PubMed DOI
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front Cell Neurosci. 2016;10:1–13. doi: 10.3389/fncel.2016.001.36. PubMed DOI PMC
Folbergrová J. Free radicals, oxidative stress, and epilepsy. In: Ahmad S, editor. Reactive oxygen species in biology and human health. Boca Raton: CRC Press; 2016. pp. 147–153.
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol. 2018;55(9):7512–7522. doi: 10.1007/s12035-018-0924-0. PubMed DOI
Linseman DA. Targeting oxidative stress for neuroprotection. Antioxid Redox Signal. 2009;11:421–424. doi: 10.1089/ARS.2008.2236. PubMed DOI
Batinic-Haberle I, Reboucas JS, Spasojevic I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13:877–918. doi: 10.1089/ARS.2009.2876. PubMed DOI PMC
Patel M, Day BJ. Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci. 1999;20:359–364. doi: 10.1016/s0165-6147(99).01336.x. PubMed DOI
Reboucas JS, Spasojevic I, Batinic-Haberle I. Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J Pharm Biomed Anal. 2008;48:1046–1049. doi: 10.1016/j.jpba.2008.08.005. PubMed DOI PMC
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, et al. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal. 2014;20:2437–2464. doi: 10.1089/ARS.2013.5413. PubMed DOI
Rong Y, Doctrow SR, Tocco G, Baudry M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci U.S.A. 1999;96:9897–9902. doi: 10.1073/pnas.96.17.9897. PubMed DOI PMC
Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats following homocysteic acid-induced seizures. Exp Neurol. 2010;204:597–609. doi: 10.1016/j.expneurol.2006.12.010. PubMed DOI
Folbergrová J, Ješina P, Drahota Y, Lisý V, Haugvicová R, Vojtíšková A, Houštěk J. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609. doi: 10.1016/j.expneurol.2006.12.010. PubMed DOI
Folbergrová J, Ješina P, Otáhal J. Treatment with resveratrol ameliorates mitochondrial dysfunction during the acute phase of status epilepticus in immature rats. Front Neurosci. 2021;15(634378):1–10. doi: 10.3389/fnins.2021.634378. PubMed DOI PMC
Folbergrová J, Otáhal J, Druga R. Effect of tempol on brain superoxide anion production and neuronal injury associated with seizures in immature rats. Epilepsia. 2011;52:51–51.
Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52:S128–S138. doi: 10.1002/mnfr.200700195. PubMed DOI
Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther. 2011;131(3):269–286. doi: 10.1016/j.pharmthera2011.04.008. PubMed DOI PMC
Holthoff JH, Woodling KA, Doergr DR, Burns ST, Hinson JA, Mayeux PR. Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol. 2010;80(8):1260–1265. doi: 10.1016/j.bcp.2010.06.027. PubMed DOI PMC
Sahebkar A. Neuroprotective effects of resveratrol: potential mechanisms. Neurochem Int. 2010;57(6):621–622. doi: 10.1016/j.neuint.2010.06.014. PubMed DOI
Kesherwani V, Atif F, Yousuf S, Agrawal SK. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf2. Neuroscience. 2013;241:80–88. doi: 10.1016/j.neuroscience.2013.03.015. PubMed DOI
Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241–272. doi: 10.1007/s00204-011-0674-5. PubMed DOI
Johnson DA, Johnson JA. Nrf2 – a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med. 2015;88:253–267. doi: 10.1016/j.freeradbiomed.2015.07.147. PubMed DOI PMC
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knetchen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18:2772. doi: 10.3390/ijms18122772. PubMed DOI PMC
Cuadrado A, Manda G, Hassan A, Alcaras MJ, Barbas C, Daiber A, et al. Transcription factor Nrf2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev. 2018;70:348–383. doi: 10.1124/pr.117.014753. PubMed DOI
Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2019;235(4):3119–3130. doi: 10.1002/jcp.29219. PubMed DOI
Li Q, Xing S, Chen Y, Liao Q, Li Q, Liu Y, et al. Reasonably activating Nrf2: a long-term, effective and controllable strategy for neurodegenerative diseases. Eur J Med Chem. 2020;185:111862. doi: 10.1016/j.ejmech.2019.111862. PubMed DOI
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 pathway in ischemic stroke: a review. Molecules. 2021;26:5001. doi: 10.3390/molecules26165001. PubMed DOI PMC
Mata A, Cadenas S. The antioxidant transcription factor Nrf2 in cardiac ischemia-reperfusion injury. Int J Mol Sci. 2021;22:11939. doi: 10.3390/ijms222111939. PubMed DOI PMC
Mazzuferi M, Kumar G, van Eyll J, Danis B, Foerch P, Kaminski RM. Nrf2 defense pathway: experimental evidence for its protective role in epilepsy. Ann Neurol. 2013;74(4):560–568. doi: 10.1002/ana.23940. PubMed DOI
Wang W, Wu YF, Zhang GL, Fang HB, Wang HC, Zang HM, Xie T, Wang WP. Activation of Nrf2-ARE signal pathway protects the brain from damage induced by epileptic seizure. Brain Res. 2014;1544:54–61. doi: 10.1016/j.brainres.2013.12.004. PubMed DOI
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2017;140(7):1885–1899. doi: 10.1093/brain/awx117. PubMed DOI PMC
Shekh-Ahmad T, Eckel R, Naidu SD, Higgins M, Yamamoto M, Dinkova-Kostova AT, et al. Keap1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain. 2018;141:1390–1403. doi: 10.1093/brain/awy071. PubMed DOI
Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open. 2013;2:761–770. doi: 10.1242/bio.20134853. PubMed DOI PMC
Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–188. doi: 10.1016/j.freeradbiomed.2015.04.036. PubMed DOI PMC
Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T. Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr. 2015;56(2):91–97. doi: 10.3164/jcbn.14-134. PubMed DOI PMC
Esteras N, Dinkova-Kostova AT, Abramov AY. Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biol Chem. 2016;397(5):383–400. doi: 10.1515/hsz-2015-0295. PubMed DOI
Holmström KM, Kostov RV, Dinkova-Kostova AT. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 2016;1:80–91. doi: 10.1016/j.cotox.2016.10.002. PubMed DOI PMC
Shekh-Ahmad T, Lieb A, Kovac S, Gola L, Wigley WCh, Abramov AY, Walker MC. Combination antioxidant therapy prevents epileptogenesis and modifies chronic epilepsy. Redox Biol. 2019;26:101278. doi: 10.1016/j.redox.2019.101278. PubMed DOI PMC
Clifford T, Acton JP, Cocksedge SP, Bowden Davies KA. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: a systematic review of human intervention trials. Mol Biol Rep. 2021;48(2):1745–1761. doi: 10.1007/s11033-020-06041-x. PubMed DOI PMC
Reyes-Corral M, Sola-Idigora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the prevention of neonatal hypoxia-ischemia: a comprehensive review of their neuroprotective properties, mechanisms of action and future directions. Int J Mol Sci. 2021;22(5):2524. doi: 10.3390/ijms22052524. PubMed DOI PMC
Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. Keap1 and done? Targeting the Nrf2 pathway with sulforaphane. Trends Food Sci Technol. 2017;69:257–269. doi: 10.1016/j.tifs.2017.02.002. PubMed DOI PMC
Huang Ch, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effect of sulforaphane in the central nervous system. Eur J Pharmacol. 2019;853:153–168. doi: 10.1016/j.ejphar.2019.03.010. PubMed DOI
Uddin MS, Al Mamun A, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci Total Environ. 2020;707:135624. doi: 10.1016/j.scitotenv.2019.135624. PubMed DOI
Schepici G, Bramanti P, Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci. 2020;21(22):8637. doi: 10.3390/ijms21228637. PubMed DOI PMC
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res. 2021;163:105283. doi: 10.1016/j.phrs.2020.105283. PubMed DOI
Luis-García ER, Limon-Pacheco JH, Serrano-Garcia N, Hernández-Pérez AD, Pedraza-Chaverri J, Orozco-Ibarra M. Sulforaphane prevents quinolinic acid-induced mitochondrial dysfunction in rat striatum. J Biochem Mol Toxicol. 2017;31(2):e21837. doi: 10.1002/jbt.21837. PubMed DOI
Carrasco-Pozo C, Tan KN, Borges K. Sulforaphane is anticonvulsant and improves mitochondrial function. J Neurochem. 2015;135(5):932–942. doi: 10.1111/jnc.13361. PubMed DOI
Ping Z, Liu W, Kang Z, Cai J, Wang Q, Cheng N, et al. Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res. 2010;1343:178–185. doi: 10.1016/j.brainres.2010.04.036. PubMed DOI
Wang B, Kulikowicz E, Lee JK, Koehler RC, Yang ZJ. Sulforaphane protects piglet brains from neonatal hypoxic-ischemic injury. Dev Neurosci. 2020;42(2-4):124–134. doi: 10.1159/000511888. PubMed DOI PMC
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, et al. Sulforaphane ameliorates metabolic changes associated with status epilepticus in immature rats. Front Cell Neurosci. 2022;16:855161. doi: 10.3389/fncel.2022.855161. PubMed DOI PMC
Dobbing J. Undernutrition and the developing brain. In: Himwich WA, editor. Developmental neurobiology. Springfield: Thomas; 1970. pp. 241–261.
Bindokas VP, Jordán J, Lee CC, Miller RJ. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996;16(4):1324–1336. doi: 10.1523/JNEUROSCI.16-04-01324.1996. PubMed DOI PMC
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic; 1998. PubMed
Liang LP, Ho YS, Patel M. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience. 2000;101(3):563–570. doi: 10.1016/S0306-452200)00397-3. PubMed DOI
Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sultana R, Butterfield DA. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med. 2006;41(11):1694–1703. doi: 10.1016/j.freeradbiomed.2006.09.002. PubMed DOI PMC
Socala K, Nieoczym D, Kowalczuk-Vasilev E, Wyska E, Wlaz P. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. Toxicol Appl Pharmacol. 2017;326:43–53. doi: 10.1016/j.taap.2017.04.010. PubMed DOI
Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSox-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48(8):983–1001. doi: 10.1016/j.freeradbiomed.2010.01.028. PubMed DOI PMC
Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J, Beck H, Elger CE. Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol. 2000;48:766–773. doi: 10.1002/1531-82499200011)48:5. PubMed DOI
Lee YM, Kang HC, Lee JS, Kim SH, Kim EY, Lee SK, et al. Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia. 2008;49(4):685–690. doi: 10.1111/j.1528-1167.2007.01522.x. PubMed DOI
Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci. 2002;15(7):1105–1114. doi: 10.1046/j.1460-9568.2002.01947.x. PubMed DOI
Chuang YC, Chang AYW, Lin J-W, Hsu SP, Chan SHH. Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia. 2004;45(10):1202–1209. doi: 10.1111/j.0013-9580.2004.18204.x. PubMed DOI
Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA. Oxidative damage to mitochondrial complex I due to peroxynitrite. J Biol Chem. 2003;278(39):37223–37230. doi: 10.1074/jbc.M305694200. PubMed DOI
Bidmon HJ, Gorg B, Palomero-Gallacher N, Schleicher A, Haussinger D, Speckmann EJ, Zilles K. Glutamine synthetase becomes nitrated and its activity reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia. 2008;49(10):1733–1748. doi: 10.1111/j.1528-1167.2008.01642.x. PubMed DOI
Ryan K, Backos DS, Reigan P, Patel M. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci. 2012;32(33):11250–11258. doi: 10.1523/JNEUROSCI.0907-12.2012. PubMed DOI PMC
Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018;134:92–99. doi: 10.1016/j.phrs.2018.06.013. PubMed DOI
Naidu SD, Dinkova-Kostova AT. Keap1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol. 2020;10(6):200105. doi: 10.1098/rsob.200105. PubMed DOI PMC
Pallesen JS, Tran KT, Bach A. Non-covalent small molecule Kelch-like Ech-associated protein1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) inhibitors and their potential for targeting central nervous system diseases. J Med Chem. 2018;61(18):8088–8103. doi: 10.1021/acs.jmedchem.8b00358. PubMed DOI
Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B. 2015;5(4):285–299. doi: 10.1016/j.apsb.2015.05.008. PubMed DOI PMC
Liu T, Lv ZF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: consequences for biological function and therapeutic implications. Free Radic Biol Med. 2021;168:129–140. doi: 10.1016/j.freeradbiomed.2021.03.034. PubMed DOI
Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277(45):42769–42774. doi: 10.1074/jbc.M206911200. PubMed DOI
Hu Ch, Eggler AL, Mesecar AD, van Breemen RB. Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 2011;24(4):515–521. doi: 10.1021/tx100389r. PubMed DOI PMC
Zhao F, Zhang J, Chang N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur J Pharmacol. 2018;824:1–10. doi: 10.1016/j.ejphar.2018.01.046. PubMed DOI
Lin TK, Chen SD, Lin KJ, Chuang YCh. Seizure-induced oxidative stress in status epilepticus: is antioxidant beneficial? Antioxidants. 2020;9(11):1029. doi: 10.3390/antiox9111029. PubMed DOI PMC
Menon B, Ramalingam K, Kumar RV. Oxidative stress in patients with epilepsy is independent of antiepileptic drugs. Seizure. 2012;21:780–784. doi: 10.1016/j.seizure.2012.09.003. PubMed DOI
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague