Treatment With Resveratrol Ameliorates Mitochondrial Dysfunction During the Acute Phase of Status Epilepticus in Immature Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33746702
PubMed Central
PMC7973046
DOI
10.3389/fnins.2021.634378
Knihovny.cz E-zdroje
- Klíčová slova
- deficiency of mitochondrial complex I activity, immature rats, protection, reactive oxygen species, resveratrol, status epilepticus, superoxide anion production,
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to elucidate the effect of resveratrol (natural polyphenol) on seizure activity, production of ROS, brain damage and mitochondrial function in the early phase of status epilepticus (SE), induced in immature 12 day-old rats by substances of a different mechanism of action (Li-pilocarpine, DL-homocysteic acid, 4-amino pyridine, and kainate). Seizure activity, production of superoxide anion, brain damage and mitochondrial function were assessed by EEG recordings, hydroethidium method, FluoroJadeB staining and Complex I activity measurement. A marked decrease of complex I activity associated with the acute phase of SE in immature brain was significantly attenuated by resveratrol, given i.p. in two or three doses (25 mg/kg each), 30 min before, 30 or 30 and 60 min after the induction of SE. Increased O2 .- production was completely normalized, brain damage partially attenuated. Since resveratrol did not influence seizure activity itself (latency, intensity, frequency), the mechanism of protection is likely due to its antioxidative properties. The findings have a clinical relevance, suggesting that clinically available substances with antioxidant properties might provide a high benefit as an add-on therapy during the acute phase of SE, influencing also mechanisms involved in the development of epilepsy.
Zobrazit více v PubMed
Batinic-Haberle I., Reboucas J. S., Spasojevic I. (2010). Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13 877–918. 10.1089/ars.2009.2876 PubMed DOI PMC
Bindokas V. P., Jordan J., Lee C. C., Miller R. J. (1996). Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci. 16 1324–1336. 10.1523/jneurosci.16-04-01324.1996 PubMed DOI PMC
Brown G. C., Borutaite V. (2004). Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 1658 44–49. 10.1016/j.bbabio.2004.03.016 PubMed DOI
Castro O. W., Upadhya D., Kodali M., Shetty A. K. (2017). Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction-are we there yet? Front. Neurol. 8:603. 10.3389/fneur.2017.00603 PubMed DOI PMC
Chuang Y. C., Chang A. Y., Lin J. W., Hsu S. P., Chan S. H. (2004). Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia 45 1202–1209. 10.1111/j.0013-9580.2004.18204.x PubMed DOI
Dobbing J. (1970). “Undernutrition and the developing brain,” in Developmental Neurobiology, eds Himwich W. A., Thomas C. C. (Hoboken, NJ: Wiley-Blackwell; ), 241–261.
Fato R., Bergamini C., Leoni S., Strocchi P., Lenaz G. (2008). Generation of reactive oxygen species by mitochondrial complex I: implications in neurodegeneration. Neurochem. Res. 33 2487–2501. 10.1007/s11064-008-9747-0 PubMed DOI
Folbergrová J. (2013). Oxidative stress in immature brain following experimentally-induced seizures. Physiol. Res. 62(Suppl. 1), S39–S48. PubMed
Folbergrová J. (2016). “Free radicals, oxidative stress, and epilepsy,” in Reactive Oxygen Species in Biology and Human Health, ed. Shamim A. (Boca Raton: CRC Press; ), 147–153.
Folbergrová J., Haugvicová R., Mareš P. (2000). Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp. Neurol. 161 336–345. 10.1006/exnr.1999.7264 PubMed DOI
Folbergrová J., Ješina P., Drahota Z., Lisı V., Haugvicová R., Vojtíšková A., et al. (2007). Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp. Neurol. 204 597–609. 10.1016/j.expneurol.2006.12.010 PubMed DOI
Folbergrová J., Ješina P., Haugvicová R., Lisı V., Houštìk J. (2010). Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem. Int. 56 394–403. 10.1016/j.neuint.2009.11.011 PubMed DOI
Folbergrová J., Ješina P., Kubová H., Druga R., Otáhal J. (2016). Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front. Cell. Neurosci. 10:136. 10.3339/fncel.2016.00136 PubMed DOI PMC
Folbergrová J., Ješina P., Kubová H., Otáhal J. (2015). Resveratrol attenuates oxidative stress associated with status epilepticus in immature rats. Epilepsia 56 118–118.
Folbergrová J., Ješina P., Kubová H., Otáhal J. (2018). Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol. Neurobiol. 55 7512–7522. 10.1007/s12035-018-0924-0 PubMed DOI
Folbergrová J., Kunz W. S. (2012). Mitochondrial dysfunction in epilepsy. Mitochondrion 12 35–40. 10.1016/j.mito.2011.04.004 PubMed DOI
Folbergrová J., Otáhal J., Druga R. (2011). Effect of tempol on brain superoxide anion production and neuronal injury associated with seizures in immature rats. Epilepsia 52 51–51.
Folbergrová J., Otáhal J., Druga R. (2012). Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp. Neurol. 233 421–429. 10.1016/j.expneurol.2011.11.009 PubMed DOI
Gupta Y. K., Briyal S., Chaudhary G. (2002). Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol. Biochem. Behav. 71 245–249. 10.1016/s0091-3057(01)00663-3 PubMed DOI
Holthoff J. H., Woodling K. A., Doerge D. R., Burns S. T., Hinson J. A., Mayeux P. R. (2010). Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem. Pharmacol. 80 1260–1265. 10.1016/j.bcp.2010.06.027 PubMed DOI PMC
Kalyanaraman B., Dranka B. P., Hardy M., Michalski R., Zielonka J. (2014). HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes–the ultimate approach for intra- and extracellular superoxide detection. Biochim. Biophys. Acta 1840 739–744. 10.1016/j.bbagen.2013.05.008 PubMed DOI PMC
Kalyanaraman B., Hardy M., Podsiadly R., Cheng G., Zielonka J. (2017). Recent developments in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling. Arch. Biochem. Biophys. 617 38–47. 10.1016/j.abb.2016.08.021 PubMed DOI PMC
Kesherwani V., Atif F., Yousuf S., Agrawal S. K. (2013). Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2. Neuroscience 241 80–88. 10.1016/j.neuroscience.2013.03.015 PubMed DOI
Kroon P. A., Iyer A., Chunduri P., Chan V., Brown L. (2010). The cardiovascular nutrapharmacology of resveratrol: pharmacokinetics, molecular mechanisms and therapeutic potential. Curr. Med. Chem. 17 2442–2455. 10.2174/092986710791556032 PubMed DOI
Kudin A. P., Bimpong-Buta N. Y., Vielhaber S., Elger C. E., Kunz W. S. (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 4127–4135. 10.1074/jbc.M310341200 PubMed DOI
Kudin A. P., Kudina T. A., Seyfried J., Vielhaber S., Beck H., Elger C. E., et al. (2002). Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur. J. Neurosci. 15 1105–1114. 10.1046/j.1460-9568.2002.01947.x PubMed DOI
Kunz W. S., Kudin A. P., Vielhaber S., Blumcke I., Zuschratter W., Schramm J., et al. (2000). Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann. Neurol. 48 766–773. PubMed
Kussmaul L., Hirst J. (2006). The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. U.S.A. 103 7607–7612. 10.1073/pnas.0510977103 PubMed DOI PMC
Lee Y. M., Kang H. C., Lee J. S., Kim S. H., Kim E. Y., Lee S. K., et al. (2008). Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia 49 685–690. 10.1111/j.1528-1167.2007.01522.x PubMed DOI
Liang L. P., Ho Y. S., Patel M. (2000). Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101 563–570. PubMed
Liang L. P., Waldbaum S., Rowley S., Huang T. T., Day B. J., Patel M. (2012). Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol. Dis. 45 1068–1076. 10.1016/j.nbd.2011.12.025 PubMed DOI PMC
Linseman D. A. (2009). Targeting oxidative stress for neuroprotection. Antioxid Redox Signal 11 421–424. 10.1089/ARS.2008.2236 PubMed DOI
Marella M., Seo B. B., Matsuno-Yagi A., Yagi T. (2007). Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J. Biol. Chem. 282 24146–24156. 10.1074/jbc.M701819200 PubMed DOI
Mazzuferi M., Kumar G., Van Eyll J., Danis B., Foerch P., Kaminski R. M. (2013). Nrf2 defense pathway: experimental evidence for its protective role in epilepsy. Ann. Neurol. 74 560–568. 10.1002/ana.23940 PubMed DOI
Mishra V., Shuai B., Kodali M., Shetty G. A., Hattiangady B., Rao X., et al. (2015). Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci. Rep. 5:17807. 10.1038/srep17807 PubMed DOI PMC
Murray J., Taylor S. W., Zhang B., Ghosh S. S., Capaldi R. A. (2003). Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J. Biol. Chem. 278 37223–37230. 10.1074/jbc.M305694200 PubMed DOI
Narayanan S. V., Dave K. R., Saul I., Perez-Pinzon M. A. (2015). Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-Related factor 2. Stroke 46 1626–1632. 10.1161/STROKEAHA.115.008921 PubMed DOI PMC
Parihar M. S., Parihar A., Villamena F. A., Vaccaro P. S., Ghafourifar P. (2008). Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative. Biochem. Biophys. Res. Commun. 367 761–767. 10.1016/j.bbrc.2008.01.015 PubMed DOI
Patel M. (2004). Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic. Biol. Med. 37 1951–1962. 10.1016/j.freeradbiomed.2004.08.021 PubMed DOI
Patel M., Day B. J. (1999). Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol. Sci. 20 359–364. 10.1016/s0165-6147(99)01336-x PubMed DOI
Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., et al. (2017). Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 140 1885–1899. 10.1093/brain/awx117 PubMed DOI PMC
Paxinos G., Watson C. (1998). The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press.
Perier C., Tieu K., Guegan C., Caspersen C., Jackson-Lewis V., Carelli V., et al. (2005). Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl. Acad. Sci. U.S.A. 102 19126–19131. 10.1073/pnas.0508215102 PubMed DOI PMC
Reboucas J. S., Spasojevic I., Batinic-Haberle I. (2008). Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J. Pharm. Biomed. Anal. 48 1046–1049. 10.1016/j.jpba.2008.08.005 PubMed DOI PMC
Rong Y., Doctrow S. R., Tocco G., Baudry M. (1999). EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. U.S.A. 96 9897–9902. 10.1073/pnas.96.17.9897 PubMed DOI PMC
Rowley S., Patel M. (2013). Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62 121–131. 10.1016/j.freeradbiomed.2013.02.002 PubMed DOI PMC
Ryan K., Backos D. S., Reigan P., Patel M. (2012). Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci. 32 11250–11258. 10.1523/JNEUROSCI.0907-12.2012 PubMed DOI PMC
Ryan K., Liang L. P., Rivard C., Patel M. (2014). Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol. Dis. 64 8–15. 10.1016/j.nbd.2013.12.006 PubMed DOI PMC
Sahebkar A. (2010). Neuroprotective effects of resveratrol: potential mechanisms. Neurochem. Int. 57 621–622. 10.1016/j.neuint.2010.06.014 PubMed DOI
Sakata Y., Zhuang H., Kwansa H., Koehler R. C., Dore S. (2010). Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp. Neurol. 224 325–329. 10.1016/j.expneurol.2010.03.032 PubMed DOI PMC
Sheng H., Chaparro R. E., Sasaki T., Izutsu M., Pearlstein R. D., Tovmasyan A., et al. (2014). Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 20 2437–2464. 10.1089/ars.2013.5413 PubMed DOI
Shetty A. K. (2011). Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol. Ther. 131 269–286. 10.1016/j.pharmthera.2011.04.008 PubMed DOI PMC
Shin E. J., Jeong J. H., Chung Y. H., Kim W. K., Ko K. H., Bach J. H., et al. (2011). Role of oxidative stress in epileptic seizures. Neurochem. Int. 59 122–137. 10.1016/j.neuint.2011.03.025 PubMed DOI PMC
Sipos I., Tretter L., Adam-Vizi V. (2003). Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 84 112–118. PubMed
Tomaciello F., Leclercq K., Kaminski R. M. (2016). Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci. Lett. 632 199–203. 10.1016/j.neulet.2016.09.002 PubMed DOI
Waldbaum S., Patel M. (2010). Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 88 23–45. 10.1016/j.eplepsyres.2009.09.020 PubMed DOI PMC
Wang S. J., Bo Q. Y., Zhao X. H., Yang X., Chi Z. F., Liu X. W. (2013). Resveratrol pre-treatment reduces early inflammatory responses induced by status epilepticus via mTOR signaling. Brain Res. 1492 122–129. 10.1016/j.brainres.2012.11.027 PubMed DOI
Wang W., Wu Y., Zhang G., Fang H., Wang H., Zang H., et al. (2014). Activation of Nrf2-ARE signal pathway protects the brain from damage induced by epileptic seizure. Brain Res. 1544 54–61. 10.1016/j.brainres.2013.12.004 PubMed DOI
Williams S., Hamil N., Abramov A. Y., Walker M. C., Kovac S. (2015). Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience 303 160–165. 10.1016/j.neuroscience.2015.07.005 PubMed DOI
Wu Z., Xu Q., Zhang L., Kong D., Ma R., Wang L. (2009). Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem. Res. 34 1393–1400. 10.1007/s11064-009-9920-0 PubMed DOI
Zielonka J., Kalyanaraman B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic. Biol. Med. 48 983–1001. 10.1016/j.freeradbiomed.2010.01.028 PubMed DOI PMC
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague
Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats