Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage
Status odvoláno Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, publikace stažené z tisku
PubMed
29269749
PubMed Central
PMC5740126
DOI
10.1038/s41598-017-18334-6
PII: 10.1038/s41598-017-18334-6
Knihovny.cz E-zdroje
- MeSH
- králíci MeSH
- kyselina peroxydusitá metabolismus MeSH
- malondialdehyd metabolismus MeSH
- oxidační stres účinky léků účinky záření MeSH
- poranění rohovky farmakoterapie metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rohovka účinky léků metabolismus účinky záření MeSH
- ultrafialové záření * MeSH
- vodík terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- publikace stažené z tisku MeSH
- Názvy látek
- kyselina peroxydusitá MeSH
- malondialdehyd MeSH
- reaktivní formy kyslíku MeSH
- vodík MeSH
The aim of this study is to examine whether molecular hydrogen (H2) is able to reduce oxidative stress after corneal damage induced by UVB irradiation. We previously found that UVB irradiation of the cornea caused the imbalance between the antioxidant and prooxidant enzymes in the corneal epithelium, followed by the imbalance between metalloproteinases and their physiological inhibitors (imbalances in favour of prooxidants and metalloproteinases) contributing to oxidative stress and development of the intracorneal inflammation. Here we investigate the effect of H2 dissolved in PBS in the concentration 0.5 ppm wt/vol, applied on rabbit corneas during UVB irradiation and healing (UVB doses 1.01 J/cm2 once daily for four days). Some irradiated corneas remained untreated or buffer treated. In these corneas the oxidative stress appeared, followed by the excessive inflammation. Malondiladehyde and peroxynitrite expressions were present. The corneas healed with scar formation and neovascularization. In contrast, in H2 treated irradiated corneas oxidative stress was suppressed and malondiladehyde and peroxynitrite expressions were absent. The corneas healed with the restoration of transparency. The study provides the first evidence of the role of H2 in prevention of oxidative and nitrosative stress in UVB irradiated corneas, which may represent a novel prophylactic approach to corneal photodamage.
Faculty of Natural Science Charles University Vinicna 7 12843 Prague 2 Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences 14220 Prague 4 Czech Republic
Loma Linda University School of Medicine Loma Linda CA 92350 USA
Zobrazit více v PubMed
Katiyar SK, Afaq F, Azizuddin K, Mukhtar I. Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signalling pathway in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-gallate. Toxicol. Appl. Pharmacol. 2001;176:110–117. doi: 10.1006/taap.2001.9276. PubMed DOI
Cejkova J, Stipek S, Crkovska J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol. Histopathol. 2000;15:1043–1050. PubMed
Cejkova J, Stıpek S, Crkovska J, Ardan T, Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVBrays. Histol. Histopathol. 2001;16:523–533. PubMed
Cejkova J, Stıpek S, Crkovska J. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol. Res. 2004;53:1–10. PubMed
Ardan T, Cejkova J. Immunohistochemical expression of matrix metalloproteinases in the rabbit corneal epithelium upon UVA and UVB irradiation. Acta Histochem. 2012;114:540–546. doi: 10.1016/j.acthis.2011.10.004. PubMed DOI
Ardan, T. et al. Reduced levels of tissue uinhibitors of metalloproteinases in UVB-irradiated corneal epithelium. Photochem Photobiol. 92, 720–727, 10.1111/php.12612. Epub2016 Aug 25 (2016). PubMed
Cejka, C., Kossl, J., Hermankova, B., Holan, V. & Cejkova. J. Molecular hydrogen effectively heals alkali-injured cornea via suppression of oxidative stress. Oxid. Med. Cell Longev. 2017, 8906027, 10.1155/2017/8906027. Epub 2017 Mar 16 (2017). PubMed PMC
Cejkova J, Ardan T, Cejka C, Kovaceva J, Zidek Z. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histol. Histopathol. 2005;20:467–473. PubMed
Cejkova J, et al. Reduced UVB-induced corneal damage caused by reactive oxygen and nitrogen species and decreased changes in corneal optics after trehalose treatment. Histol. Histopathol. 2010;25:1403–1416. PubMed
Ohsawa I. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci. 2010;51:487–492. doi: 10.1167/iovs.09-4089. PubMed DOI
Cai J, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res. 2009;1256:129–137. doi: 10.1016/j.brainres.2008.11.048. PubMed DOI
Mao YE, et al. Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem. Biophys. Res. Commun. 2009;381:602–605. doi: 10.1016/j.bbrc.2009.02.105. PubMed DOI
Sun Q, et al. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp. Biol. Med.(Maywood) 2009;234:1212–1219. doi: 10.3181/0812-RM-349. PubMed DOI
Zheng X, et al. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic..Res.. 2009;43:478–484. doi: 10.1080/10715760902870603. PubMed DOI
Chen C, et al. Hydrogen-rich saline protects against cord injury in rats. Neurochem.Res. 2010;35:1111–1118. doi: 10.1007/s11064-010-0162-y. PubMed DOI
Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr. Phar. Des. 2011;17:2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC
Liu Y, et al. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model. Med. Gas Res. 2011;1:15–17. doi: 10.1186/2045-9912-1-15. PubMed DOI PMC
Wang C, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kB activation in a rat model of amyloid-beta-induced Alzheimer´s disease. Neurosci Lett. 2011;491:127–132. doi: 10.1016/j.neulet.2011.01.022. PubMed DOI
Huang L, Zhao S, Zhang JH, Sun X. Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression. Ophthalmic Res. 2012;47:122–127. doi: 10.1159/000329600. PubMed DOI
Dixon BJ, Tang J, Zhang JH. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med. Gas Res. 2013;3:10–11. doi: 10.1186/2045-9912-3-10. PubMed DOI PMC
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential for hydrogen medicine. Pharmacol. Ther. 2014;144:1–11. doi: 10.1016/j.pharmthera.2014.04.006. PubMed DOI
Zalesak, M. et al. Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: a novel cardioprotective intervention. Can. J. Physiol. Pharmacol. 1–6, 10.1139/cjpp-2016-0693. Epub ahead of print (2017). PubMed
Iuchi, K. et al. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci. Rep. 6, 18971, 10.1038/srep18971 (2016). PubMed PMC
Slezak, J. et al. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can. J. Physiol. Pharmacol. 10.1139/cjpp-2017-0121. Epub ahead of print (2017). PubMed
Oharazawa H, et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci. 2010;51:487–492. doi: 10.1167/iovs.09-4089. PubMed DOI
Oharazawa H, et al. Recent progress toward hydrogen medicine: potencial of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Res. 2011;17:2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC
Yokota T, et al. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clin. Exp. Ophthalmol. 2015;43:568–77. doi: 10.1111/ceo.12525. PubMed DOI
Wei L, et al. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Exp. Eye Res. 2012;94:117–27. doi: 10.1016/j.exer.2011.11.016. PubMed DOI
Igarashi, T. et al. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery. Sci. Rep. 6, 31190, 10.1038/srep31190 (2016). PubMed PMC
Kubota S, et al. Hydrogen and Nacetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Invest. Ophthalmol. Vis. Sci. 2011;52:427–433. doi: 10.1167/iovs.10-6167. PubMed DOI
Buddi R, et al. Evidence of oxidative stress in human corneal diseases. J. Histochem. Cytochem. 2002;50:341–351. doi: 10.1177/002215540205000306. PubMed DOI
Oduntan OA, Mashige KP. A review of the role of oxidative stress in the pathogenesis of eye diseases. S. Afr. Optom. 2011;70:191–199.
Tao Y, et al. The potential utilizations of hydrogen as a promising therapeutic stratégy against ocular diseases. Ther. Clin. Risk. Manag. 2016;12:799–806. PubMed PMC
Larossa M, Lodovici M, Morbidelli L, Dolara P. Hydrocaffeic and p-coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells in vitro and rabbit eye in vivo. Free Radic. Res. 2008;42:903–910. doi: 10.1080/10715760802510077. PubMed DOI
Lodovici M, Raimondi I, Guglielmi F, Gemignani S, Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology, 2003;184:141–147. doi: 10.1016/S0300-483X(02)00572-3. PubMed DOI
Lodovici M, et al. Protective effect of 4-coumarin acid from UVB ray damage in the rabbit eye. Toxicol. 2009;255:1–2. doi: 10.1016/j.tox.2008.09.011. PubMed DOI
Umapathy, A., Donaldson, P. & Lim, J. Antioxidant delivery pathway in the anterior eye. Biomed. Res. Int. 2013, 207250, 10.1155/2013/207250. Epub 2013 Sep (2013). PubMed PMC
Richer S. Antioxidants and the eye. Int. Ophthalmol. Clin. 2000;40:1–16. doi: 10.1097/00004397-200010000-00002. PubMed DOI
Chiu CJ, Taylor A. Nutricional antioxidants and age-related cataract and maculopathy. Exp. Eye Res. 2007;84:229–245. doi: 10.1016/j.exer.2006.05.015. PubMed DOI
Ohta S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015;555:289–317. doi: 10.1016/bs.mie.2014.11.038. PubMed DOI
Slezak J, et al. Preventive and therapeutic application of molecular hydrogen in situations with excessive production of free radicals. Physiol. Res. 2016;65(Suppl 1):S11–28. PubMed
Meek KM, Dennis S, Khan S. Changes in refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 2003;85:2205–2212. doi: 10.1016/S0006-3495(03)74646-3. PubMed DOI PMC
Zucker BB. Hydration and trasnparency of corneal stroma. Arch. Ophthalmol. 1966;75:228–231. doi: 10.1001/archopht.1966.00970050230016. PubMed DOI