An Immunohistochemical Study of the Increase in Antioxidant Capacity of Corneal Epithelial Cells by Molecular Hydrogen, Leading to the Suppression of Alkali-Induced Oxidative Stress
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, publikace stažené z tisku
PubMed
32655773
PubMed Central
PMC7327556
DOI
10.1155/2020/7435260
Knihovny.cz E-zdroje
- MeSH
- alkálie toxicita MeSH
- antioxidancia metabolismus MeSH
- chemické popálení farmakoterapie metabolismus patologie MeSH
- epitelové buňky účinky léků metabolismus patologie MeSH
- hojení ran účinky léků MeSH
- králíci MeSH
- modely nemocí na zvířatech MeSH
- neovaskularizace rohovky prevence a kontrola MeSH
- oxidační stres účinky léků MeSH
- popálení oka chemicky indukované farmakoterapie metabolismus patologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rohovka krevní zásobení účinky léků metabolismus patologie MeSH
- vodík farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- publikace stažené z tisku MeSH
- Názvy látek
- alkálie MeSH
- antioxidancia MeSH
- reaktivní formy kyslíku MeSH
- vodík MeSH
Corneal alkali burns are potentially blinding injuries. Alkali induces oxidative stress in corneas followed by excessive corneal inflammation, neovascularization, and untransparent scar formation. Molecular hydrogen (H2), a potent reactive oxygen species (ROS) scavenger, suppresses oxidative stress and enables corneal healing when applied on the corneal surface. The purpose of this study was to examine whether the H2 pretreatment of healthy corneas evokes a protective effect against corneal alkali-induced oxidative stress. Rabbit eyes were pretreated with a H2 solution or buffer solution, by drops onto the ocular surface, and the corneas were then burned with 0.25 M NaOH. The results obtained with immunohistochemistry and pachymetry showed that in the corneas of H2-pretreated eyes, slight oxidative stress appeared followed by an increased expression of antioxidant enzymes. When these corneas were postburned with alkali, the alkali-induced oxidative stress was suppressed. This was in contrast to postburned buffer-pretreated corneas, where the oxidative stress was strong. These corneas healed with scar formation and neovascularization, whereas corneas of H2-pretreated eyes healed with restoration of transparency in the majority of cases. Corneal neovascularization was strongly suppressed. Our results suggest that the corneal alkali-induced oxidative stress was reduced via the increased antioxidant capacity of corneal cells against reactive oxygen species (ROS). It is further suggested that the ability of H2 to induce the increase in antioxidant cell capacity is important for eye protection against various diseases or external influences associated with ROS production.
Faculty of Natural Science Charles University Vinicna 7 12843 Prague 2 Czech Republic
Loma Linda University School of Medicine Loma Linda CA 92350 USA
Zobrazit více v PubMed
Cejkova J., Stipek S., Crkovska J., Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histology and Histopathology. 2000;15(4):1043–1050. doi: 10.14670/HH-15.1043. PubMed DOI
Cejková J., Stipek S., Crkovska J., Ardan T., Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histology and Histopathology. 2001;16(2):523–533. doi: 10.14670/HH-16.523. PubMed DOI
Cejková J., Stípek S., Crkovská J., et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiological Research. 2004;53(1):1–10. PubMed
Kubota M., Shimmura S., Kubota S., et al. Hydrogen and N-acetyl-l-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Investigative Ophthalmology and Visual Science. 2011;52(1):427–433. doi: 10.1167/iovs.10-6167. PubMed DOI
Zeng P., Pi R.-B., Li P., et al. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice. Molecular Vision. 2015;21:688–698. PubMed PMC
Cejka C., Kossl J., Hermankova B., Holan V., Cejkova J. Molecular hydrogen effectively heals alkali-injured cornea via suppression of oxidative stress. Oxidative Medicine and Cellular Longevity. 2017;2017:12. doi: 10.1155/2017/8906027.8906027 PubMed DOI PMC
Cejka C., Kossl J., Hermankova B., et al. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Scientific Reports. 2017;7(1, article 18017) doi: 10.1038/s41598-017-18334-6. PubMed DOI PMC
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacology & Therapeutics. 2014;144(1):1–11. doi: 10.1016/j.pharmthera.2014.04.006. PubMed DOI
Ge L., Yang M., Yang N. N., Yin X. X., Song W. G. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget. 2017;8(60):102653–102673. doi: 10.18632/oncotarget.21130. PubMed DOI PMC
Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Current Pharmaceutical Design. 2011;17(22):2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC
Ohta S. Molecular Hydrogen as a Novel Antioxidant: Overview of the Advantages of Hydrogen for Medical Applications. Methods in Enzymology. 2015;555:289–317. doi: 10.1016/bs.mie.2014.11.038. PubMed DOI
Zhang Y., Tan S., Xu J., Wang T. Hydrogen therapy in cardiovascular and metabolic diseases: from bench to bedside. Cellular Physiology and Biochemistry. 2018;47(1):1–10. doi: 10.1159/000489737. PubMed DOI
Murakami Y., Ito M., Ohsawa I. Molecular hydrogen protects against oxidative stress induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS One. 2017;12(5, article e0176992) doi: 10.1371/journal.pone.0176992. PubMed DOI PMC
Iketani M., Ohshiro J., Urushibara T., et al. Preadministration of hydrogen-rich water protects against lipopolysaccharide-induced sepsis and attenuates liver injury. Shock. 2017;48(1):85–93. doi: 10.1097/SHK.0000000000000810. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Čejka Č., Luyckx J., Čejkova J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiological Research. 2012;61(3):299–306. doi: 10.33549/physiolres.932242. PubMed DOI
Cejkova J., Trosan P., Cejka C., et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Experimental Eye Research. 2013;116(2):312–323. doi: 10.1016/j.exer.2013.10.002. PubMed DOI
Ohno K., Ito M., Ichihara M., Ito M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxidative Medicine and Cellular Longevity. 2012;2012:11. doi: 10.1155/2012/353152.353152 PubMed DOI PMC
Iuchi K., Imoto A., Kamimura N., et al. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Scientific Reports. 2016;6(1, article 18971) doi: 10.1038/srep18971. PubMed DOI PMC
Matei N., Camara R., Zhang J. H. Emerging mechanisms and novel applications of hydrogen gas therapy. Medical Gas Research. 2018;8(3):98–102. doi: 10.4103/2045-9912.239959. PubMed DOI PMC
Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry and Cytochemistry. 2016;50(3):341–351. doi: 10.1177/002215540205000306. PubMed DOI
Yokota T., Kamimura N., Igarashi T., Takahashi H., Ohta S., Oharazawa H. Protective effect of molecular hydrogen against oxidative stress caused by peroxynitrite derived from nitric oxide in rat retina. Clinical and Experimental Ophthalmology. 2015;43(6):568–577. doi: 10.1111/ceo.12525. PubMed DOI
Oduntan O. A., Mashige K. P. A review of the role of oxidative stress in the pathogenesis of eye diseases. African Vision and Eye Health. 2011;70(4) doi: 10.4102/aveh.v70i4.116. DOI
Dixon B. J., Tang J., Zhang J. H. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Medical Gas Research. 2013;3(1):10–11. doi: 10.1186/2045-9912-3-10. PubMed DOI PMC
Oharazawa H., Igarashi T., Yokota T., et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investigative Opthalmology & Visual Science. 2010;51(1):p. 487. doi: 10.1167/iovs.09-4089. PubMed DOI
Feng M., Wang X. H., Yang X. B., Xiao Q., Jiang F. G. Protective effect of saturated hydrogen saline against blue light-induced retinal damage in rats. International Journal of Ophthalmology. 2012;5(2):151–157. doi: 10.3980/j.issn.2222-3959.2012.02.07. PubMed DOI PMC
Wei L., Ge L., Qin S., et al. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Experimental Eye Research. 2012;94(1):117–127. doi: 10.1016/j.exer.2011.11.016. PubMed DOI
Huang L., Zhao S., Zhang J. H., Sun X. Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression. Ophthalmic Research. 2012;47(3):122–127. doi: 10.1159/000329600. PubMed DOI
Tian L., Zhang L., Xia F., An J., Sugita Y., Zhang Z. Hydrogen-rich saline ameliorates the retina against light-induced damage in rats. Medical Gas Research. 2013;3(1):p. 19. doi: 10.1186/2045-9912-3-19. PubMed DOI PMC
Tao Y., Geng L., Wang L., et al. Use of hydrogen as a novel therapeutic strategy against photoreceptor degeneration in retinitis pigmentosa patients. Medical Science Monitor. 2016;22:776–779. doi: 10.12659/MSM.897107. PubMed DOI PMC
Ardan T., Cejkova J. Immunohistochemical expression of matrix metalloproteinases in the rabbit corneal epithelium upon UVA and UVB irradiation. Acta Histochemica. 2012;114(6):540–546. doi: 10.1016/j.acthis.2011.10.004. PubMed DOI
Ardan T., Němcová L., Bohuslavová B., et al. Reduced levels of tissue inhibitors of metalloproteinases in UVB-irradiated corneal epithelium. Photochemistry and Photobiology. 2016;92(5):720–727. doi: 10.1111/php.12612. PubMed DOI
Cejkova J., Ardan T., Cejka C., Kovaceva J., Zidek Z. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants. Histology and Histopathology. 2005;20(2):467–473. doi: 10.14670/HH-20.467. PubMed DOI