Overlapping SigH and SigE sigma factor regulons in Corynebacterium glutamicum

. 2022 ; 13 () : 1059649. [epub] 20230228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36925999

The sigma H (σΗ) and sigma E (σE) subunits of Corynebacterium glutamicum RNA polymerase belong to Group 4 of sigma factors, also called extracytoplasmic function (ECF) sigma factors. Genes of the C. glutamicum σΗ regulon that are involved in heat and oxidative stress response have already been defined, whereas the genes of the σE regulon, which is involved in cell surface stress response, have not been explored until now. Using the C. glutamicum RES167 strain and its derivative C. glutamicum ΔcseE with a deletion in the anti-σΕ gene, differential gene expression was analyzed by RNA sequencing. We found 296 upregulated and 398 downregulated genes in C. glutamicum ΔcseE compared to C. glutamicum RES167. To confirm the functional link between σΕ and the corresponding promoters, we tested selected promoters using the in vivo two-plasmid system with gfpuv as a reporter gene and by in vitro transcription. Analyses with RNAP+σΗ and RNAP+σΕ, which were previously shown to recognize similar promoters, proved that the σΗ and σE regulons significantly overlap. The σE-controlled genes were found to be involved for example in protein quality control (dnaK, dnaJ2, clpB, and clpC), the regulation of Clp proteases (clgR), and membrane integrity maintenance. The single-promoter analyses with σΗ and σΕ revealed that there are two groups of promoters: those which are exclusively σΗ-specific, and the other group of promoters, which are σΗ/σE-dependent. No exclusively σE-dependent promoter was detected. We defined the consensus sequences of exclusively σΗ-regulated promotors to be -35 GGAAt and - 10 GTT and σΗ/σE-regulated promoters to be -35 GGAAC and - 10 cGTT. Fifteen genes were found to belong to the σΗ/σΕ regulon. Homology modeling showed that there is a specific interaction between Met170 in σΗ and the nucleotides -31 and - 30 within the non-coding strand (AT or CT) of the σΗ-dependent promoters. In σE, Arg185 was found to interact with the nucleotides GA at the same positions in the σE-dependent promoters.

Zobrazit více v PubMed

Albersmeier A., Pfeifer-Sancar K., Rückert C., Kalinowski J. (2017). Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. J. Biotechnol. 257, 99–109. doi: 10.1016/j.jbiotec.2017.04.008 PubMed DOI

Ao W., Gaudet J., Kent W. J., Muttumu S., Mango S. E. (2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305, 1743–1746. doi: 10.1126/science.1102216 PubMed DOI

Bang I. S., Frye J. G., McClelland M., Velayudhan J., Fang F. C. (2005). Alternative sigma factor interactions in salmonella: σE and σH promote antioxidant defences by enhancing σS levels. Mol. Microbiol. 56, 811–823. doi: 10.1111/j.1365-2958.2005.04580.x PubMed DOI

Barreiro C., Gonzalez-Lavado E., Pátek M., Martín J. F. (2013). Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J. Bacteriol. 195:2706. doi: 10.1128/JB.00344-13 PubMed DOI PMC

Beckers G., Strösser J., Hildebrandt U., Kalinowski J., Farwick M., Krämer R., et al. . (2005). Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Mol. Microbiol. 58, 580–595. doi: 10.1111/j.1365-2958.2005.04855.x PubMed DOI

Blumenstein J., Rädisch R., Štěpánek V., Grulich M., Dostálová H., Pátek M. (2022). Identification of Rhodococcus erythropolis promoters controlled by alternative sigma factors using in vivo and in vitro systems and heterologous RNA polymerase. Curr. Microbiol. 79:55. doi: 10.1007/s00284-021-02747-8 PubMed DOI

Bott M., Brocker M. (2012). Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl. Microbiol. Biotechnol. 94, 1131–1150. doi: 10.1007/s00253-012-4060-x PubMed DOI PMC

Brockmann-Gretza O., Kalinowski J. (2006). Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230. doi: 10.1186/1471-2164-7-230 PubMed DOI PMC

Busche T., Šilar R., Pičmanová M., Pátek M., Kalinowski J. (2012). Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445. doi: 10.1186/1471-2164-13-445 PubMed DOI PMC

Campagne S., Marsh M. E., Capitani G., Vorholt J. A., Allain F. H. (2014). Structural basis for −10 promoter element melting by environmentally induced sigma factors. Nat. Struct. Mol. Biol. 21, 269–276. doi: 10.1038/nsmb.2777 PubMed DOI

Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190. doi: 10.1101/gr.849004 PubMed DOI PMC

Donà V., Rodrigue S., Dainese E., Palù G., Gaudreau L., Manganelli R., et al. . (2008). Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor σE in mycobacterium tuberculosis. J. Bacteriol. 190, 5963–5971. doi: 10.1128/JB.00622-08 PubMed DOI PMC

Dostálová H., Busche T., Holátko J., Rucká L., Štěpánek V., Barvík I., et al. . (2019). Overlap of promoter recognition specificity of stress response sigma factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Front. Microbiol. 9:3287. doi: 10.3389/fmicb.2018.03287 PubMed DOI PMC

Dostálová H., Holátko J., Busche T., Rucká L., Rapoport A., Halada P., et al. . (2017). Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express 7:133. doi: 10.1186/s13568-017-0436-8 PubMed DOI PMC

Dutta N. K., Mehra S., Kaushal D. (2010). A mycobacterium tuberculosis sigma factor network responds to cell-envelope damage by the promising anti-mycobacterial thioridazine. PLoS One 5:e10069. doi: 10.1371/journal.pone.0010069 PubMed DOI PMC

Ehira S., Shirai T., Teramoto H., Inui M., Yukawa H. (2008). Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl. Environ. Microbiol. 74, 5146–5152. doi: 10.1128/AEM.00944-08 PubMed DOI PMC

Ehira S., Teramoto H., Inui M., Yukawa H. (2009). Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J. Bacteriol. 191, 2964–2972. doi: 10.1128/JB.00112-09 PubMed DOI PMC

Engels S., Schweitzer J. E., Ludwig C., Bott M., Schaffer S. (2004). clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol. Microbiol. 52, 285–302. doi: 10.1111/j.1365-2958.2003.03979.x PubMed DOI

Fang C., Li L., Shen L., Shi J., Wang S., Feng Y., et al. . (2019). Structures and mechanism of transcription initiation by bacterial ECF factors. Nucleic Acids Res. 47, 7094–7104. doi: 10.1093/nar/gkz470 PubMed DOI PMC

Green M. R., Sambrook J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Guo X., Myasnikov A. G., Chen J., Crucifix C., Papai G., Takacs M., et al. . (2018). Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816.e4– 827.e4. doi: 10.1016/j.molcel.2018.02.008 PubMed DOI PMC

Halgasova N., Bukovska G., Ugorcakova J., Timko J., Kormanec J. (2002). The Brevibacterium flavum sigma factor SigB has a role in the environmental stress response. FEMS Microbiol. Lett. 216, 77–84. doi: 10.1111/j.1574-6968.2002.tb11418.x PubMed DOI

Hanahan D. (1985). “Techniques for transformation of E. coli,” in DNA Cloning. A Practical Approach. Vol. 1. ed. Glover D. M. (Oxford, United Kingdom: IRL; ), 109–135.

Hilker R., Stadermann K. B., Doppmeier D., Kalinowski J., Stoye J., Straube J. (2014). ReadXplorer–visualization and analysis of mapped sequences. Bioinformatics 30, 2247–2254. doi: 10.1093/bioinformatics/btu205 PubMed DOI PMC

Hilker R., Stadermann K. B., Schwengers O., Anisiforov E., Jaenicke S., Weisshaar B., et al. . (2016). ReadXplorer 2-detailed read mapping analysis and visualization from one single source. Bioinformatics 32, 3702–3708. doi: 10.1093/bioinformatics/btw541 PubMed DOI PMC

Holátko J., Šilar R., Rabatinová A., Šanderová H., Halada P., Nešvera J., et al. . (2012). Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl. Microbiol. Biotechnol. 96, 521–529. doi: 10.1007/s00253-012-4336-1 PubMed DOI

Hünnefeld M., Persicke M., Kalinowski J., Frunzke J. (2019). The MarR-type regulator MalR is involved in stress-responsive cell envelope remodeling in Corynebacterium glutamicum. Front. Microbiol. 10:1039. doi: 10.3389/fmicb.2019.01039 PubMed DOI PMC

Hutchings M. I., Hong H. J., Leibovitz E., Sutcliffe I. C., Buttner M. J. (2006). The σE cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J. Bacteriol. 188, 7222–7229. doi: 10.1128/JB.00818-06 PubMed DOI PMC

Keilhauer C., Eggeling L., Sahm H. (1993). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J. Bacteriol. 175, 5595–5603. doi: 10.1128/jb.175.17.5595-5603.1993 PubMed DOI PMC

Kirchner O., Tauch A. (2003). Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J. Biotechnol. 104, 287–299. doi: 10.1016/s0168-1656(03)00148-2 PubMed DOI

Knoppová M., Phensaijai M., Veselý M., Zemanová M., Nešvera J., Pátek M. (2007). Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55, 234–239. doi: 10.1007/s00284-007-0106-1 PubMed DOI

Lane W. J., Darst S. A. (2006). The structural basis for promoter −35 element recognition by the group IV σ factors. PLoS Biol. 4:e269. doi: 10.1371/journal.pbio.0040269 PubMed DOI PMC

Lardi M., Aguilar C., Pedrioli A., Omasits U., Suppiger A., Cárcamo-Oyarce G., et al. . (2015). σ54-dependent response to nitrogen limitation and virulence in Burkholderia cenocepacia strain H111. Appl. Environ. Microbiol. 81, 4077–4089. doi: 10.1128/AEM.00694-15 PubMed DOI PMC

Larisch C., Nakunst D., Huser A. T., Tauch A., Kalinowski J. (2007). The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4. doi: 10.1186/1471-2164-8-4 PubMed DOI PMC

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Manganelli R., Provvedi R. (2010). An integrated regulatory network including two positive feedback loops to modulate the activity of σE in mycobacteria. Mol. Microbiol. 75, 538–542. doi: 10.1111/j.1365-2958.2009.07009.x PubMed DOI

Manganelli R., Voskuil M. I., Schoolnik G. K., Dubnau E., Gomez M., Smith I. (2002). Role of the extracytoplasmic-function σ factor σH in mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45, 365–374. doi: 10.1046/j.1365-2958.2002.03005.x PubMed DOI

Manganelli R., Voskuil M. I., Schoolnik G. K., Smith I. (2001). The mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages. Mol. Microbiol. 41, 423–437. doi: 10.1046/j.1365-2958.2001.02525.x PubMed DOI

Mehra S., Golden N. A., Stuckey K., Didier P. J., Doyle L. A., Russell-Lodrigue K. E., et al. . (2012). The mycobacterium tuberculosis stress response factor sigH is required for bacterial burden as well as immunopathology in primate lungs. J. Infect. Dis. 205, 1203–1213. doi: 10.1093/infdis/jis102 PubMed DOI PMC

Montero I. G., Dolata K. M., Schlüter R., Malherbe G., Sievers S., Zühlke D., et al. . (2019). Comparative proteome analysis in an Escherichia coli CyDisCo strain identifies stress responses related to protein production oxidative stress and accumulation of misfolded protein. Microb. Cell Factories 18:19. doi: 10.1186/s12934-019-1071-7 PubMed DOI PMC

Paget M. S., Kang J. G., Roe J. H., Buttner M. J. (1998). sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17, 5776–5782. doi: 10.1093/emboj/17.19.5776 PubMed DOI PMC

Park J. H., Lee J. H., Roe J. H. (2019). SigR, a hub of multilayered regulation of redox and antibiotic stress responses. Mol. Microbiol. 112, 420–431. doi: 10.1111/mmi.14341 PubMed DOI

Park S. D., Youn J. W., Kim Y. J., Lee S. M., Kim Y., Lee H. S. (2008). Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE. Microbiology 154, 915–923. doi: 10.1099/mic.0.2007/012690-0 PubMed DOI

Pátek M., Holátko J., Busche T., Kalinowski J., Nešvera J. (2013). Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6, 103–117. doi: 10.1111/1751-7915.12019 PubMed DOI PMC

Pátek M., Nešvera J. (2011). Sigma factors and promoters in Corynebacterium glutamicum. J. Biotechnol. 154, 101–113. doi: 10.1016/j.jbiotec.2011.01.017 PubMed DOI

Pfeifer-Sancar K., Mentz A., Rückert C., Kalinowski J. (2013). Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14:888. doi: 10.1186/1471-2164-14-888 PubMed DOI PMC

Prajapati B., Bernal-Cabasa M., López-Álvarez M., Schaffer M., Bartel J., Rath H., et al. . (2021). Double trouble: bacillus depends on a functional tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment. Biochimica et Biophysica Acta (BBA) - molecular. Cell Res. 1868:118914. doi: 10.1016/j.bbamcr.2020.118914 PubMed DOI

Raman S., Song T., Puyang X., Bardarov S., Jacobs W. R., Jr., Husson R. N. (2001). The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in mycobacterium tuberculosis. J. Bacteriol. 183, 6119–6125. doi: 10.1128/JB.183.20.6119-6125.2001 PubMed DOI PMC

Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R. (2006). The σ factors of mycobacterium tuberculosis. FEMS Microbiol. Rev. 30, 926–941. doi: 10.1111/j.1574-6976.2006.00040.x PubMed DOI

Rogers A. R., Turner E. E., Johnson D. T., Ellermeier J. R. (2022). Envelope stress activates expression of the twin arginine translocation (tat) system in salmonella. Microbiol. Spectr. 29:e0162122. doi: 10.1128/spectrum.01621-22 PubMed DOI PMC

Ross W., Thompson J. F., Newlands J. T., Gourse R. L. (1990). E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 9, 3733–3742. doi: 10.1002/j.1460-2075.1990.tb07586.x PubMed DOI PMC

Salomon-Ferrer R., Gotz A. W., Poole D., Le Grand S., Walker R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888. doi: 10.1021/ct400314y PubMed DOI

Sharp J. D., Singh A. K., Park S. T., Lyubetskaya A., Peterson M. W., Gomes A. L., et al. . (2016). Comprehensive definition of the SigH regulon of mycobacterium tuberculosis reveals transcriptional control of diverse stress responses. PLoS One 11:e0152145. doi: 10.1371/journal.pone.0152145 PubMed DOI PMC

Song T., Song S.-E., Raman S., Anaya M., Husson R. N. (2008). Critical role of a single position in the −35 element for promoter recognition by mycobacterium tuberculosis SigE and SigH. J. Bacteriol. 190, 2227–2230. doi: 10.1128/JB.01642-07 PubMed DOI PMC

Šilar R., Holátko J., Rucká L., Rapoport A., Dostálová H., Kadeřábková P., et al. . (2016). Use of in vitro transcription system for analysis of Corynebacterium glutamicum promoters recognized by two sigma factors. Curr. Microbiol. 73, 401–408. doi: 10.1007/s00284-016-1077-x PubMed DOI

Štěpánek V., Dostálová H., Busche T., Blumenstein J., Grulich M., Plašil L., et al. . (2022). Sigma regulatory network in Rhodococcus erythropolis CCM2595. FEMS Microbiol. Lett. 369:fnac014. doi: 10.1093/femsle/fnac014 PubMed DOI

Taniguchi H., Busche T., Patschkowski T., Niehaus K., Pátek M., Kalinowski J., et al. . (2017). Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol. 17:158. doi: 10.1186/s12866-017-1067-6 PubMed DOI PMC

Tauch A., Kirchner O., Löffler B., Gotker S., Pühler A., Kalinowski J. (2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr. Microbiol. 45, 362–367. doi: 10.1007/s00284-002-3728-3 PubMed DOI

Thakur K. G., Praveena T., Gopal B. (2010). Structural and biochemical bases for the redox sensitivity of mycobacterium tuberculosis RslA. J. Mol. Biol. 397, 1199–1208. doi: 10.1016/j.jmb.2010.02.026 PubMed DOI PMC

Toyoda K., Teramoto H., Yukawa H., Inui M. (2015). Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J. Bacteriol. 197, 483–496. doi: 10.1128/JB.02248-14 PubMed DOI PMC

Tran N. T., Huang X., Hong H. J., Bush M. J., Chandra G., Pinto D., et al. . (2019). Defining the regulon of genes controlled by σE, a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol. Microbiol. 112, 461–481. doi: 10.1111/mmi.14250 PubMed DOI PMC

Vašicová P., Abrhámová Z., Nešvera J., Pátek M., Sahm H., Eikmanns B. (1998). Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnl. Tech. 12, 743–746.

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. . (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303. doi: 10.1093/nar/gky427 PubMed DOI PMC

Wittchen M., Busche T., Gaspar A. H., Lee J. H., Ton-That H., Kalinowski J., et al. . (2018). Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics 19:82. doi: 10.1186/s12864-018-4481-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace