SalvGlandDx - a comprehensive salivary gland neoplasm specific next generation sequencing panel to facilitate diagnosis and identify therapeutic targets
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33878706
PubMed Central
PMC8081865
DOI
10.1016/j.neo.2021.03.008
PII: S1476-5586(21)00018-X
Knihovny.cz E-zdroje
- Klíčová slova
- Biopsy, Comprehensive, FNA, Molecular, Salivary gland neoplasm, Testing,
- MeSH
- biopsie MeSH
- fúzní onkogenní proteiny genetika metabolismus MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie metody MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery * MeSH
- nádorové buněčné linie MeSH
- nádory slinných žláz diagnóza farmakoterapie genetika MeSH
- staging nádorů MeSH
- stanovení celkové genové exprese * metody MeSH
- stupeň nádoru MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fúzní onkogenní proteiny MeSH
- nádorové biomarkery * MeSH
Diagnosis of salivary gland neoplasms is often challenging due to their high morphological diversity and overlaps. Several recurrent molecular alterations have been described recently, which can serve as powerful diagnostic tools and potential therapeutic targets (e.g. NTRK or RET fusions). However, current sequential molecular testing can be expensive and time consuming. In order to facilitate the diagnosis of salivary gland neoplasms, we designed an all-in-one RNA-based next generation sequencing panel suitable for the detection of mutations, fusions and gene expression levels (including NR4A3) of 27 genes involved in salivary gland neoplasms. Here we present the validation of the "SalvGlandDx" panel on FFPE histological specimen including fine needle aspiration (FNA) cell block material, against the standard methods currently used at our institution. In a second part we describe selected unique cases in which the SalvGlandDx panel allowed proper diagnosis and new insights into special molecular characteristics of selected salivary gland tumors. We characterize a unique salivary gland adenocarcinoma harboring a ZCCHC7-NTRK2 fusion, a highly uncommon spindle cell and pseudoangiomatoid adenoid-cystic carcinoma with MYBL1-NFIB fusion, and a purely oncocytic mucoepidermoid carcinoma, whereas diagnosis could be made by detection of a CRTC3-MAML2 rearrangement on the cell block specimen of the FNA. Further, a rare case of a SS18-ZBTB7A rearranged low-grade adenocarcinoma previously described as potential spectrum of microsecretory adenocarcinoma, is reported. In addition, features of six cases within the spectrum of polymorphous adenocarcinoma / cribriform adenocarcinoma of salivary gland including PRKD1 p.E710D mutations and novel fusions involving PRKAR2A-PRKD1, SNX9-PRKD1 and ATL2-PRKD3, are described.
Department of Pathology and Medical Genetics University Hospital Basel Basel Switzerland
Department of Pathology Cantonal Hospital of Lucerne Lucerne Switzerland
Institute for Histological and Cytological Diagnostics AG Aarau Switzerland
Zobrazit více v PubMed
Nix JS, Rooper LM. Navigating small biopsies of salivary gland tumors: a pattern-based approach. Journal of the American Society of Cytopathology. 2020;9:369–382. doi: 10.1016/j.jasc.2020.06.004. PubMed DOI
Pusztaszeri M, Rossi ED, Baloch ZW, Faquin WC. Salivary Gland Fine Needle Aspiration and Introduction of the Milan Reporting System. Advances in Anatomic Pathology. 2019;26:84–92. doi: 10.1097/PAP.0000000000000224. PubMed DOI
Skálová A, Stenman G, Simpson RHW, Hellquist H, Slouka D, Svoboda T, Bishop JA, Hunt JL, Nibu K-I, Rinaldo A. The Role of Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am J Surg Pathol. 2018;42:e11–e27. doi: 10.1097/PAS.0000000000000980. PubMed DOI
Urano M, Nakaguro M, Yamamoto Y, Hirai H, Tanigawa M, Saigusa N, Shimizu A, Tsukahara K, Tada Y, Sakurai K. Diagnostic Significance of HRAS Mutations in Epithelial-Myoepithelial Carcinomas Exhibiting a Broad Histopathologic Spectrum. Am J Surg Pathol. 2019;43:984–994. doi: 10.1097/PAS.0000000000001258. PubMed DOI
Haller F, Bieg M, Will R, Körner C, Weichenhan D, Bott A, Ishaque N, Lutsik P, Moskalev EA, Mueller SK. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat Commun. 2019 doi: 10.1038/s41467-018-08069-x. PubMed DOI PMC
Skálová A, Vanecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, Starek I, Geierova M, Simpson RHW, Passador-Santos F. Mammary Analogue Secretory Carcinoma of Salivary Glands, Containing the ETV6-NTRK3 Fusion Gene: A Hitherto Undescribed Salivary Gland Tumor Entity. The American Journal of Surgical Pathology. 2010;34:599–608. doi: 10.1097/PAS.0b013e3181d9efcc. PubMed DOI
Zito Marino F, Pagliuca F, Ronchi A, Cozzolino I, Montella M, Berretta M, Errico ME, Donofrio V, Bianco R, Franco R. NTRK Fusions, from the Diagnostic Algorithm to Innovative Treatment in the Era of Precision Medicine. Int J Mol Sci. 2020 doi: 10.3390/ijms21103718. PubMed DOI PMC
Asahina M, Saito T, Hayashi T, Fukumura Y, Mitani K, Yao T. Clinicopathological effect of PLAG1 fusion genes in pleomorphic adenoma and carcinoma ex pleomorphic adenoma with special emphasis on histological features. Histopathology. 2019;74:514–525. doi: 10.1111/his.13759. PubMed DOI
Skálová A, Agaimy A, Vanecek T, Banecková M, Laco J, Ptáková N, Šteiner P, Majewska H, Biernat W, Corcione L. Molecular Profiling of Clear Cell Myoepithelial Carcinoma of Salivary Glands With EWSR1 Rearrangement Identifies Frequent PLAG1 Gene Fusions But No EWSR1 Fusion Transcripts. The American Journal of Surgical Pathology. 2021;45:1–13. doi: 10.1097/PAS.0000000000001591. PubMed DOI
Dalin MG, Katabi N, Persson M, Lee K-W, Makarov V, Desrichard A, Walsh LA, West L, Nadeem Z, Ramaswami D. Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions. Nat Commun. 2017 doi: 10.1038/s41467-017-01178-z. PubMed DOI PMC
El Hallani S, Udager AM, Bell D, Fonseca I, Thompson LDR, Assaad A, Agaimy A, Luvison AM, Miller C, Seethala RR. Epithelial-Myoepithelial Carcinoma: Frequent Morphologic and Molecular Evidence of Preexisting Pleomorphic Adenoma, Common HRAS Mutations in PLAG1-intact and HMGA2-intact Cases, and Occasional TP53, FBXW7, and SMARCB1 Alterations in High-grade Cases. Am J Surg Pathol. 2018;42:18–27. doi: 10.1097/PAS.0000000000000933. PubMed DOI PMC
Afshari MK, Fehr A, Nevado PT, Andersson MK, Stenman G. Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes, Chromosomes and Cancer. 2020;59:652–660. doi: 10.1002/gcc.22885. PubMed DOI
Persson F, Andrén Y, Winnes M, Wedell B, Nordkvist A, Gudnadottir G, Dahlenfors R, Sjögren H, Mark J, Stenman G. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes, Chromosomes and Cancer. 2009;48:69–82. doi: 10.1002/gcc.20619. PubMed DOI
Wasserman JK, Dickson BC, Smith A, Swanson D, Purgina BM, Weinreb I. Metastasizing Pleomorphic Adenoma: Recurrent PLAG1/HMGA2 Rearrangements and Identification of a Novel HMGA2-TMTC2 Fusion. The American Journal of Surgical Pathology. 2019;43:1145–1151. doi: 10.1097/PAS.0000000000001280. PubMed DOI
Togashi Y, Dobashi A, Sakata S, Sato Y, Baba S, Seto A, Mitani H, Kawabata K, Takeuchi K. MYB and MYBL1 in adenoid cystic carcinoma: diversity in the mode of genomic rearrangement and transcripts. Mod Pathol. 2018;31:934–946. doi: 10.1038/s41379-018-0008-8. PubMed DOI
Brayer KJ, Frerich CA, Kang H, Ness SA. Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor–Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discov. 2016;6:176–187. doi: 10.1158/2159-8290.CD-15-0859. PubMed DOI PMC
Fonseca FP, Filho MS, Altemani A, Speight PM, Vargas PA. Molecular signature of salivary gland tumors: potential use as diagnostic and prognostic marker. Journal of Oral Pathology & Medicine. 2016;45:101–110. doi: 10.1111/jop.12329. PubMed DOI
Nakayama T, Miyabe S, Okabe M, Sakuma H, Ijichi K, Hasegawa Y, Nagatsuka H, Shimozato K, Inagaki H. Clinicopathological significance of the CRTC3–MAML2 fusion transcript in mucoepidermoid carcinoma. Modern Pathology. 2009;22:1575–1581. doi: 10.1038/modpathol.2009.126. PubMed DOI
Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CKY, Perez-Ordonez B, Harding NJ, Alfaro J, Chu KC, Viale A. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nature Genetics. 2014;46:1166–1169. doi: 10.1038/ng.3096. PubMed DOI PMC
Weinreb I, Zhang L, Tirunagari LM, Sung Y-S, Chen C-L, Perez-Ordonez B, Clarke BA, Skalova A, Chiosea SI, Seethala RR. Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes, Chromosomes and Cancer. 2014;53:845–856. doi: 10.1002/gcc.22195. PubMed DOI
Xu B, Barbieri AL, Bishop JA, Chiosea SI, Dogan S, Di Palma S, Faquin WC, Ghossein R, Hyrcza M, VY Jo. Histologic Classification and Molecular Signature of Polymorphous Adenocarcinoma (PAC) and Cribriform Adenocarcinoma of Salivary Gland (CASG): An International Interobserver Study. The American Journal of Surgical Pathology. 2020;44:545–552. doi: 10.1097/PAS.0000000000001431. PubMed DOI PMC
Bishop JA, Weinreb I, Swanson D, Westra WH, Qureshi HS, Sciubba J, MacMillan C, Rooper LM, Dickson BC. Microsecretory Adenocarcinoma: A Novel Salivary Gland Tumor Characterized by a Recurrent: MEF2C-SS18: Fusion. The American Journal of Surgical Pathology. 2019;43:1023–1032. doi: 10.1097/PAS.0000000000001273. PubMed DOI
Andreasen S, Varma S, Barasch N, Thompson LDR, Miettinen M, Rooper L, Stelow EB, Agander TK, Seethala RR, Chiosea SI. The HTN3-MSANTD3 Fusion Gene Defines a Subset of Acinic Cell Carcinoma of the Salivary Gland. The American Journal of Surgical Pathology. 2019;43:489–496. doi: 10.1097/PAS.0000000000001200. PubMed DOI PMC
Skálová A, Ptáková N, Santana T, Agaimy A, Ihrler S, Uro-Coste E, Thompson LDR, Bishop JA, Baněčkova M, Rupp NJ. NCOA4-RET and TRIM27-RET Are Characteristic Gene Fusions in Salivary Intraductal Carcinoma, Including Invasive and Metastatic Tumors: Is „Intraductal“ Correct? Am J Surg Pathol. 2019;43:1303–1313. doi: 10.1097/PAS.0000000000001301. PubMed DOI
Bishop JA, Nakaguro M, Whaley RD, Ogura K, Imai H, Laklouk I, Faquin WC, Sadow PM, Gagan J, Nagao T. Oncocytic Intraductal Carcinoma of Salivary Glands: A Distinct Variant with TRIM33-RET Fusions and BRAF V600E mutations. Histopathology. 2020 doi: 10.1111/his.14296. PubMed DOI PMC
Skálová A, Baneckova M, Thompson LDR, Ptáková N, Stevens TM, Brcic L, Hyrcza M, Michal MJ, Simpson RHW, Santana T. Expanding the Molecular Spectrum of Secretory Carcinoma of Salivary Glands With a Novel VIM-RET Fusion. The American Journal of Surgical Pathology. 2020;44:1295–1307. doi: 10.1097/PAS.0000000000001535. PubMed DOI
Skalova A, Vanecek T, Martinek P, Weinreb I, Stevens TM, Simpson RHW, Hyrcza M, Rupp NJ, Baneckova M, Michal M. Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation: Report of 10 Cases. Am J Surg Pathol. 2018;42:234–246. doi: 10.1097/PAS.0000000000000972. PubMed DOI
Rooper LM, Karantanos T, Ning Y, Bishop JA, Gordon SW, Kang H. Salivary Secretory Carcinoma With a Novel ETV6-MET Fusion: Expanding the Molecular Spectrum of a Recently Described Entity. Am J Surg Pathol. 2018;42:1121–1126. doi: 10.1097/PAS.0000000000001065. PubMed DOI
Antonescu CR, Katabi N, Zhang L, Sung YS, Seethala RR, Jordan RC, Perez-Ordoñez B, Have C, Asa SL, Leong IT. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes, Chromosomes and Cancer. 2011;50:559–570. doi: 10.1002/gcc.20881. PubMed DOI
Vogels R, Baumhoer D, van Gorp J, Eijkelenboom A, Verdijk M, van Cleef P, Bloemena E, Slootweg PJ, Lohman B, Debiec-Rychter M. Clear Cell Odontogenic Carcinoma: Occurrence of EWSR1-CREB1 as Alternative Fusion Gene to EWSR1-ATF1. Head Neck Pathol. 2018;13:225–230. doi: 10.1007/s12105-018-0953-z. PubMed DOI PMC
Chapman E, Skalova A, Ptakova N, Martinek P, Goytain A, Tucker T, Xiong W, Leader M, Kudlow BA, Haimes JD. Molecular Profiling of Hyalinizing Clear Cell Carcinomas Revealed a Subset of Tumors Harboring a Novel EWSR1-CREM Fusion: Report of 3 Cases. The American Journal of Surgical Pathology. 2018;42:1182–1189. doi: 10.1097/PAS.0000000000001114. PubMed DOI
Rooper LM, Jo VY, Antonescu CR, Nose V, Westra WH, Seethala RR, Bishop JA. Adamantinoma-like Ewing Sarcoma of the Salivary Glands: A Newly Recognized Mimicker of Basaloid Salivary Carcinomas. The American Journal of Surgical Pathology. 2019;43:187–194. doi: 10.1097/PAS.0000000000001171. PubMed DOI PMC
Agaimy A, Fonseca I, Martins C, Thway K, Barrette R, Harrington KJ, Hartmann A, French CA, Fisher C. NUT Carcinoma of the Salivary Glands: Clinicopathologic and Molecular Analysis of 3 Cases and a Survey of NUT Expression in Salivary Gland Carcinomas. The American Journal of Surgical Pathology. 2018;42:877–884. doi: 10.1097/PAS.0000000000001046. PubMed DOI PMC
Giridhar P, Mallick S, Kashyap L, Rath GK. Patterns of care and impact of prognostic factors in the outcome of NUT midline carcinoma: a systematic review and individual patient data analysis of 119 cases. Eur Arch Otorhinolaryngol. 2018;275:815–821. doi: 10.1007/s00405-018-4882-y. PubMed DOI
French CA, Rahman S, Walsh EM, Kuhnle S, Grayson AR, Lemieux ME, Grunfeld N, Rubin BP, Antonescu CR, Zhang S. NSD3-NUT Fusion Oncoprotein in NUT Midline Carcinoma: Implications for a Novel Oncogenic Mechanism. Cancer Discovery. 2014;4:928–941. doi: 10.1158/2159-8290.CD-14-0014. PubMed DOI PMC
Agaimy A, Mueller SK, Bumm K, Iro H, Moskalev EA, Hartmann A, Stoehr R, Haller F. Intraductal Papillary Mucinous Neoplasms of Minor Salivary Glands With AKT1 p.Glu17Lys Mutation. The American Journal of Surgical Pathology. 2018;42:1076–1082. doi: 10.1097/PAS.0000000000001080. PubMed DOI
Rooper LM, Argyris PP, Thompson LDR, Gagan J, Westra WH, Jordan RC, Koutlas IG, Bishop JA. Salivary Mucinous Adenocarcinoma Is a Histologically Diverse Single Entity With Recurrent AKT1 E17K Mutations: Clinicopathologic and Molecular Characterization With Proposal for a Unified Classification. Am J Surg Pathol. 2021 doi: 10.1097/PAS.0000000000001688. PubMed DOI
Lee Y-H, Huang W-C, Hsieh M-S. CTNNB1 mutations in basal cell adenoma of the salivary gland. Journal of the Formosan Medical Association. 2018;117:894–901. doi: 10.1016/j.jfma.2017.11.011. PubMed DOI
Jo VY, Sholl LM, Krane JF. Distinctive Patterns of CTNNB1 (β-Catenin) Alterations in Salivary Gland Basal Cell Adenoma and Basal Cell Adenocarcinoma. The American Journal of Surgical Pathology. 2016;40:1143–1150. doi: 10.1097/PAS.0000000000000669. PubMed DOI
Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA, Qu K, Gong X, Ng T, Jones CD. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet. 2014;46:722–725. doi: 10.1038/ng.2986. PubMed DOI PMC
Coura BP, Bernardes VF, de Sousa SF, França JA, Pereira NB, Pontes HAR, Batista AC, da Cruz Perez DE, de Albuquerque RLC, Junior, de Souza LB. KRAS mutations drive adenomatoid odontogenic tumor and are independent of clinicopathological features. Modern Pathology. 2019;32:799–806. doi: 10.1038/s41379-018-0194-4. PubMed DOI
Morita M, Murase T, Okumura Y, Ueda K, Sakamoto Y, Masaki A, Kawakita D, Tada Y, Nibu K-I, Shibuya Y. Clinicopathological significance of EGFR pathway gene mutations and CRTC1/3–MAML2 fusions in salivary gland mucoepidermoid carcinoma. Histopathology. 2020;76:1013–1022. doi: 10.1111/his.14100. PubMed DOI
Sebastiao APM, Xu B, Lozada JR, Pareja F, Geyer FC, Da Cruz Paula A, da Silva EM, Ghossein RA, Weinreb I, de Noronha L. Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD genes. Modern Pathology. 2020;33:65–73. doi: 10.1038/s41379-019-0351-4. PubMed DOI PMC
Hsieh M-S, Bishop JA, Wang Y-P, Poh CF, Cheng Y-SL, Lee Y-H, Jin Y-T, Chang JYF. Salivary Sialadenoma Papilliferum Consists of Two Morphologically, Immunophenotypically, and Genetically Distinct Subtypes. Head Neck Pathol. 2019;14:489–496. doi: 10.1007/s12105-019-01068-4. PubMed DOI PMC
Weinreb I, Bishop JA, Chiosea SI, Seethala RR, Perez-Ordonez B, Zhang L, Sung Y-S, Chen C-L, Assaad A, Oliai BR. Recurrent RET Gene Rearrangements in Intraductal Carcinomas of Salivary Gland. Am J Surg Pathol. 2018;42:442–452. doi: 10.1097/PAS.0000000000000952. PubMed DOI PMC
Luk PP, Weston JD, Yu B, Selinger CI, Ekmejian R, Eviston TJ, Lum T, Gao K, Boyer M, O'Toole SA. Salivary duct carcinoma: Clinicopathologic features, morphologic spectrum, and somatic mutations. Head & Neck. 2016;38:E1838–E1847. doi: 10.1002/hed.24332. PubMed DOI
Nakaguro M, Urano M, Ogawa I, Hirai H, Yamamoto Y, Yamaguchi H, Tanigawa M, Matsubayashi J, Hirano H, Shibahara J. Histopathological evaluation of minor salivary gland papillary-cystic tumours: focus on genetic alterations in sialadenoma papilliferum and intraductal papillary mucinous neoplasm. Histopathology. 2020;76:411–422. doi: 10.1111/his.13990. PubMed DOI
Kim Y, Song S, Lee M, Swatloski T, Kang JH, Ko Y-H, Park W-Y, Jeong H-S, Park K. Integrative genomic analysis of salivary duct carcinoma. Sci Rep. 2020 doi: 10.1038/s41598-020-72096-2. PubMed DOI PMC
Bishop JA, Gagan J, Baumhoer D, McLean-Holden AL, Oliai BR, Couce M, Thompson LDR. Sclerosing Polycystic “Adenosis” of Salivary Glands: A Neoplasm Characterized by PI3K Pathway Alterations More Correctly Named Sclerosing Polycystic Adenoma. Head Neck Pathol. 2019;14:630–636. doi: 10.1007/s12105-019-01088-0. PubMed DOI PMC
Haller F, Skálová A, Ihrler S, Märkl B, Bieg M, Moskalev EA, Erber R, Blank S, Winkelmann C, Hebele S. Nuclear NR4A3 Immunostaining Is a Specific and Sensitive Novel Marker for Acinic Cell Carcinoma of the Salivary Glands. The American Journal of Surgical Pathology. 2019;43:1264–1272. doi: 10.1097/PAS.0000000000001279. PubMed DOI
Rechsteiner M, von Teichman A, Rüschoff JH, Fankhauser N, Pestalozzi B, Schraml P, Weber A, Wild P, Zimmermann D, Moch H. KRAS, BRAF, and TP53 Deep Sequencing for Colorectal Carcinoma Patient Diagnostics. The Journal of Molecular Diagnostics. 2013;15:299–311. doi: 10.1016/j.jmoldx.2013.02.001. PubMed DOI
Rupp NJ, Rechsteiner M, Freiberger SN, Lenggenhager D, Urosevic M, Burger IA, Rushing EJ, Mihic-Probst D. New observations in tumor cell plasticity: mutational profiling in a case of metastatic melanoma with biphasic sarcomatoid transdifferentiation. Virchows Arch. 2018;473:517–521. doi: 10.1007/s00428-018-2376-3. PubMed DOI
Rupp NJ, Brada M, Skálová A, Bode B, Broglie MA, Morand GB, Rechsteiner M, Freiberger SN. New Insights into Tumor Heterogeneity: A Case of Solid-Oncocytic Epithelial-Myoepithelial Carcinoma of the Parotid Gland Harboring a HRAS and Heterogeneous Terminating ARID1A Mutation. Head Neck Pathol. 2019 doi: 10.1007/s12105-019-01055-9. PubMed DOI PMC
Wang W, Xu C, Lei L, Wang X, Zhu Y, Fang Y, Cai X, Lin R, Lin L, Wang H. Abstract 38: Large-scale study of NTRK fusions in Chinese solid tumors and using next generation sequencing: A multicenter study. Cancer Res. 2020;80:38. doi: 10.1158/1538-7445.AM2020-38. DOI
Michal M, Kacerovska D, Kazakov DV. Cribriform Adenocarcinoma of the Tongue and Minor Salivary Glands: A Review. Head Neck Pathol. 2013;7:3–11. doi: 10.1007/s12105-013-0457-9. PubMed DOI PMC
Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:271–282. doi: 10.1016/S1470-2045(19)30691-6. PubMed DOI PMC
Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N Engl J Med. 2018;378:731–739. doi: 10.1056/NEJMoa1714448. PubMed DOI PMC
Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, Hechtman JF, Troiani T, López-Rios F, Douillard J-Y. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Annals of Oncology. 2019;30:1417–1427. doi: 10.1093/annonc/mdz204. PubMed DOI
Nguyen L, Chopra S, Laskar DB, Rao J, Lieu D, Chung F, Kim ED, de Peralta-Venturina M, Bose S, Balzer B. NOR-1 distinguishes acinic cell carcinoma from its mimics on fine-needle aspiration biopsy specimens. Human Pathology. 2020;102:1–6. doi: 10.1016/j.humpath.2020.05.001. PubMed DOI
Skálová A, Agaimy A, Stanowska O, Baneckova M, Ptáková N, Ardighieri L, Nicolai P, Lombardi D, Durzynska M, Corcione L. Molecular Profiling of Salivary Oncocytic Mucoepidermoid Carcinomas Helps to Resolve Differential Diagnostic Dilemma With Low-grade Oncocytic Lesions. Am J Surg Pathol. 2020;44:1612–1622. doi: 10.1097/PAS.0000000000001590. PubMed DOI
Todorovic E, Dickson BC, Weinreb I. Salivary Gland Cancer in the Era of Routine Next-Generation Sequencing. Head and Neck Pathol. 2020;14:311–320. doi: 10.1007/s12105-020-01140-4. PubMed DOI PMC
Weinreb I, Seethala RR, Perez-Ordoñez B, Chetty R, Hoschar AP, Hunt JL. Oncocytic Mucoepidermoid Carcinoma: Clinicopathologic Description in a Series of 12 Cases. The American Journal of Surgical Pathology. 2009;33:409–416. doi: 10.1097/PAS.0b013e318184b36d. PubMed DOI
Seethala RR. An Update on Grading of Salivary Gland Carcinomas. Head Neck Pathol. 2009;3:69–77. doi: 10.1007/s12105-009-0102-9. PubMed DOI PMC
Makarenkova HP, Dartt DA. Myoepithelial Cells: Their Origin and Function in Lacrimal Gland Morphogenesis, Homeostasis, and Repair. Curr Mol Biol Rep. 2015;1:115–123. PubMed PMC
Bastaki JM, Purgina BM, Dacic S, Seethala RR. Secretory Myoepithelial Carcinoma: A Histologic and Molecular Survey and a Proposed Nomenclature for Mucin Producing Signet Ring Tumors. Head Neck Pathol. 2014;8:250–260. doi: 10.1007/s12105-014-0518-8. PubMed DOI PMC
El-Naggar A, Chan J, Grandis J, Takata T. 4th Edition. IARC; Lyon: 2017. Slootweg P WHO Classification of Head and Neck Tumours.
Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, Watabe Y, Honda K, Yamada T, Yoshimoto S. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Modern Pathology. 2013;26:1041–1050. doi: 10.1038/modpathol.2013.54. PubMed DOI
Vander Poorten V, Triantafyllou A, Skálová A, Stenman G, Bishop JA, Hauben E, Hunt JL, Hellquist H, Feys S, De Bree R. Polymorphous adenocarcinoma of the salivary glands: reappraisal and update. Eur Arch Otorhinolaryngol. 2018;275:1681–1695. doi: 10.1007/s00405-018-4985-5. PubMed DOI
Andreasen S, von Holstein SL, Homøe P, Heegaard S. Recurrent rearrangements of the PLAG1 and HMGA2 genes in lacrimal gland pleomorphic adenoma and carcinoma ex pleomorphic adenoma. Acta Ophthalmologica. 2018;96:e768–e771. doi: 10.1111/aos.13667. PubMed DOI
Katabi N, Ghossein R, Ho A, Dogan S, Zhang L, Sung Y-S, Antonescu CR. Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum Pathol. 2015;46:26–33. doi: 10.1016/j.humpath.2014.08.017. PubMed DOI PMC
Chênevert J, Duvvuri U, Chiosea S, Dacic S, Cieply K, Kim J, Shiwarski D, Seethala RR. DOG1: a novel marker of salivary acinar and intercalated duct differentiation. Modern Pathology. 2012;25:919–929. doi: 10.1038/modpathol.2012.57. PubMed DOI
Leivo I. Sinonasal Adenocarcinoma: Update on Classification, Immunophenotype and Molecular Features. Head and Neck Pathol. 2016;10:68–74. doi: 10.1007/s12105-016-0694-9. PubMed DOI PMC
Rooper LM, Thompson LDR, Gagan J, Oliai BR, Weinreb I, Bishop JA. Salivary Intraductal Carcinoma Arising within Intraparotid Lymph Node: A Report of 4 Cases with Identification of a Novel STRN-ALK Fusion. Head and Neck Pathol. 2020 doi: 10.1007/s12105-020-01198-0. PubMed DOI PMC