The effect of sulforaphane on perinatal hypoxic-ischemic brain injury in rats

. 2022 Jul 29 ; 71 (3) : 401-411. [epub] 20220526

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35616041

Perinatal hypoxic-ischemic insult (HII) is one of the main devastating causes of morbidity and mortality in newborns. HII induces brain injury which evolves to neurological sequelae later in life. Hypothermia is the only therapeutic approach available capable of diminishing brain impairment after HII. Finding a novel therapeutic method to reduce the severity of brain injury and its consequences is critical in neonatology. The present paper aimed to evaluate the effect of sulforaphane (SFN) pre-treatment on glucose metabolism, neurodegeneration, and functional outcome at the acute, sub-acute, and sub-chronic time intervals in the experimental model of perinatal hypoxic-ischemic insult in rats. To estimate the effect of SFN on brain glucose uptake we have performed 18F-deoxyglucose (FDG) microCT/PET. The activity of FDG was determined in the hippocampus and sensorimotor cortex. Neurodegeneration was assessed by histological analysis of Nissl-stained brain sections. To investigate functional outcomes a battery of behavioral tests was employed. We have shown that although SFN possesses a protective effect on glucose uptake in the ischemic hippocampus 24 h and 1 week after HII, no effect has been observed in the motor cortex. We have further shown that the ischemic hippocampal formation tends to be thinner in HIE and SFN treatment tends to reverse this pattern. We have observed subtle chronic movement deficit after HII detected by ladder rung walking test with no protective effect of SFN. SFN should be thus considered as a potent neuroprotective drug with the capability to interfere with pathophysiological processes triggered by perinatal hypoxic-ischemic insult.

Zobrazit více v PubMed

Allen KA, Brandon DH. Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs Rev. 2011;11:125–133. doi: 10.1053/j.nainr.2011.07.004. PubMed DOI PMC

Bryce J, Boschi-Pinto C, Shibuya K, Black RE WHO Child Health Epidemiology Reference Group. WHO estimates the causes of death in children. Lancet. 2005;365:1147–1152. doi: 10.1016/S0140-6736(05)71877-8. PubMed DOI

Edwards AB, Anderton RS, Knuckey NW, Meloni BP. Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: A case for cationic arginine-rich peptides (CARPs) Brain Sci. 2018;8:147. doi: 10.3390/brainsci8080147. PubMed DOI PMC

Glass HC, Shellhaas RA. Acute symptomatic seizures in neonates. Semin Pediatr Neurol. 2019;32:100768. doi: 10.1016/j.spen.2019.08.004. PubMed DOI

Varghese B, Xavier R, Manoj VC, Aneesh MK, Priya PS, Ashok Kumar A, Sreenivasan VK. Magnetic resonance imaging spectrum of perinatal hypoxic-ischemic brain injury. Indian J Radiol Imaging. 2016;26:316–327. doi: 10.4103/0971-3026.190421. PubMed DOI PMC

Rocha-Ferreira E, Hristova M. Plasticity in the neonatal brain following hypoxic-ischaemic injury. Neural Plast. 2016;2016:4901014. doi: 10.1155/2016/4901014. PubMed DOI PMC

Muhammad Aslam HM, Saleem S, Afzal R, Iqbal U, Saleem SM, Abid Shaikh MW, Shahid N. Risk factors of birth asphyxia. Ital J Pediatr. 2014;40:94. doi: 10.1186/s13052-014-0094-2. PubMed DOI PMC

Perlman JM. Pathogenesis of hypoxic-ischemic brain injury. J Perinatol. 2007;27:S39–S46. doi: 10.1038/sj.jp.7211716. DOI

Graham EM, Burd I, Everett AD, Northington FJ. Blood biomarkers for evaluation of perinatal encephalopathy. Front Pharmacol. 2016;7:196. doi: 10.3389/fphar.2016.00196. PubMed DOI PMC

Yang SN, Lai MC. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol. 2011;2011:609813. doi: 10.1155/2011/609813. PubMed DOI PMC

Patel M. Mitochondrial dysfunction and oxidative stress: Cause and consequence of epileptic seizures. Free Radic Biol Med. 2004;37:1951–1962. doi: 10.1016/j.freeradbiomed.2004.08.021. PubMed DOI

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292. PubMed DOI

Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. 2013;62:121–131. doi: 10.1016/j.freeradbiomed.2013.02.002. PubMed DOI PMC

Folbergrová J, Ješina P, Kubová N, Druga R, Otáhal J. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front Cell Neurosci. 2016;10:136. doi: 10.3389/fncel.2016.00136. PubMed DOI PMC

Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101–110. doi: 10.1016/j.biopha.2015.07.025. PubMed DOI

Qin X, Cheng J, Zhong Y, Mahgoub OK, Akter F, Fan Y, Aldughaim M, Xie Q, Qin L, Gu L, Jian Z, Xiong X, Liu R. Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy. Front Mol Neurosci. 2019;12:88. doi: 10.3389/fnmol.2019.00088. PubMed DOI PMC

Bouayed J, Bohn T. Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3:228–237. doi: 10.4161/oxim.3.4.12858. PubMed DOI PMC

Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60:748–766. doi: 10.1016/j.neuron.2008.10.010. PubMed DOI PMC

Ping Z, Liu W, Kang Z, Cai J, Wang Q, Cheng N, Wang S, Wang S, Zhang JH, Sun X. Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res. 2010;1343:178–185. doi: 10.1016/j.brainres.2010.04.036. PubMed DOI

Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev. 2013;2013:415078. doi: 10.1155/2013/415078. PubMed DOI PMC

O’Mealey GB, Berry WL, Plafker SM. Sulforaphane is a Nrf2-independent inhibitor of mitochondrial fission. Redox Biol. 2017;11:103–110. doi: 10.1016/j.redox.2016.11.007. PubMed DOI PMC

Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. doi: 10.1038/s41598-017-14520-8. PubMed DOI PMC

Heiss EH, Schachner D, Zimmermann K, Dirsch VM. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol. 2013;1:359–365. doi: 10.1016/j.redox.2013.06.001. PubMed DOI PMC

Ma Q. Role of Nrf2 in oxidative stress and toxicity. Ann Rev Pharmacol Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC

Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727–1745. doi: 10.1089/ars.2017.7342. PubMed DOI PMC

Zhang Y, Gilmour A, Ahn Y-H, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine. 2021;86:153062. doi: 10.1016/j.phymed.2019.153062. PubMed DOI PMC

Alfieri A, Srivastava S, Siow RCM, Modo M, Fraser PA, Giovanni E. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol. 2011;17:4125–4136. doi: 10.1113/jphysiol.2011.210294. PubMed DOI PMC

Pfister RH, Soll RF. Hypothermia for the treatment of infants with hypoxic-ischemic encephalopathy. J Perinatol. 2010;30:82–87. doi: 10.1038/jp.2010.91. PubMed DOI

Shah PS, Ohlsson A, Perlman M. Hypothermia to treat neonatal hypoxic ischemic encephalopathy: Systematic review. Obst Gynecol Survey. 2008;63:85–86. doi: 10.1097/01.ogx.0000300470.41760.3b. PubMed DOI

Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res. 2021;69(Suppl 3):S379–S401. doi: 10.33549/physiolres.934595. PubMed DOI PMC

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC

Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: Evolution of an animal model. Dev Neurosci. 2005;27:81–86. doi: 10.1159/000085978. PubMed DOI

Sarikaya I. PET studies in epilepsy. Am J Nucl Med Mol Imaging. 2015;5:416–430. PubMed PMC

Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–284. doi: 10.1016/j.jneumeth.2006.01.027. PubMed DOI

Sánchez F, Orero A, Soriano A. ALBIRA: A small animal PET/SPECT/CT imaging system. Med Phys. 2013;40:051906. doi: 10.1118/1.4800798. PubMed DOI

Metz GA, Whishaw IQ. The ladder rung walking task: a scoring system and its practical application. J Vis Exp. 2009;(28):1204. doi: 10.3791/1204. PubMed DOI PMC

Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18:337–347. doi: 10.1016/j.molmed.2012.04.003. PubMed DOI

De Lange C, Malinen E, Qu H, Johnsrud K, Skretting A, Saugstad OD, Munkeby BH. Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs. Eur J Nucl Med Mol Imaging. 2012;39:792–799. doi: 10.1007/s00259-011-2055-y. PubMed DOI

Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–228. doi: 10.1097/00004647-199802000-00014. PubMed DOI

Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–288. doi: 10.1038/jcbfm.1994.35. PubMed DOI

Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, Svenningsen NW. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501. doi: 10.1203/00006450-200104000-00010. PubMed DOI

Svoboda J, Litvinec A, Kala D, Pošusta A, Vávrová L, Jiruška P, Otáhal J. Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats. Physiol Res. 2019;68:37–48. doi: 10.33549/physiolres.933958. PubMed DOI

Laštůvka Z, Borbélyová V, Janišová K, Otáhal J, Mysliveček J, Riljak V. Neonatal hypoxic-ischemic brain injury leads to sex-specific deficits in rearing and climbing in adult mice. Physiol Res. 2020;69(Suppl 3):S499–S512. doi: 10.33549/physiolres.934604. PubMed DOI PMC

Lubics A, Reglodi D, Tamás A, Kiss P, Szalai M, Szalontay L, Lengvári I. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res. 2005;157:157–165. doi: 10.1016/j.bbr.2004.06.019. PubMed DOI

Goodfellow MJ, Borcar A, Proctor JL, Greco T, Rosenthal RE, Fiskum G. Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol. 2020;328:113247. doi: 10.1016/j.expneurol.2020.113247. PubMed DOI PMC

Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64:503–508. doi: 10.1016/j.etp.2010.11.005. PubMed DOI

Ma LL, Xing GP, Yu Y, Liang H, Yu T-X, Zheng W-H, Lai T-B. Exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia. Int J Clin Exp Med. 2015;8:17811–17817. PubMed PMC

Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38:3280–3286. doi: 10.1161/STROKEAHA.107.486506. PubMed DOI

Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane ameliorates metabolic changes associated with status epilepticus in immature rats. Front Cell Neurosci. 2022;16:855161. doi: 10.3389/fncel.2022.855161. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...