Nanodiamond surface chemistry controls assembly of polypyrrole and generation of photovoltage
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS18/179/OHK4/3T/13
České Vysoké Učení Technické v Praze
CZ.02.1.01/0.0/0.0/15 003/0000464
European Regional Development Fund
15-01809S
Grantová Agentura České Republiky
PubMed
33437005
PubMed Central
PMC7803993
DOI
10.1038/s41598-020-80438-3
PII: 10.1038/s41598-020-80438-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoscale composite of detonation nanodiamond (DND) and polypyrrole (PPy) as a representative of organic light-harvesting polymers is explored for energy generation, using nanodiamond as an inorganic electron acceptor. We present a technology for the composite layer-by-layer synthesis that is suitable for solar cell fabrication. The formation, pronounced material interaction, and photovoltaic properties of DND-PPy composites are characterized down to nanoscale by atomic force microscopy, infrared spectroscopy, Kelvin probe, and electronic transport measurements. The data show that DNDs with different surface terminations (hydrogenated, oxidized, poly-functional) assemble PPy oligomers in different ways. This leads to composites with different optoelectronic properties. Tight material interaction results in significantly enhanced photovoltage and broadband (1-3.5 eV) optical absorption in DND/PPy composites compared to pristine materials. Combination of both oxygen and hydrogen functional groups on the nanodiamond surface appears to be the most favorable for the optoelectronic effects. Theoretical DFT calculations corroborate the experimental data. Test solar cells demonstrate the functionality of the concept.
Attocube systems AG Eglfinger Weg 2 85540 Munich Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 6 Czech Republic
Zobrazit více v PubMed
Mahmood A, et al. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A. 2018;6:16769–16797.
Dang MT, Hirsch L, Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 2011;23:3597–3602. PubMed
Lukina EA, et al. Light-induced charge separation in a P3HT/PC70BM composite as studied by out-of-phase electron spin echo spectroscopy. Phys. Chem. Chem. Phys. 2016;18:28585–28593. PubMed
Guo X, et al. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ. Sci. 2012;5:7943–7949.
Holliday S, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016;7:11585. PubMed PMC
Liu D, et al. An effective strategy for controlling the morphology of high-performance non-fullerene polymer solar cells without post-treatment: employing bare rigid aryl rings as lever arms in new asymmetric benzodithiophene. J. Mater. Chem. A. 2018;6:18125–18132.
Fan Q, et al. High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Nano Energy. 2017;40:20–26.
Speller EM, et al. From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A. 2019 doi: 10.1039/C9TA05235F. DOI
Duan L, Elumalai NK, Zhang Y, Uddin A. Progress in non-fullerene acceptor based organic solar cells. Sol. Energy Mater. Sol. Cells. 2019;193:22–65.
Li X, et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 2019;10:519. PubMed PMC
Sugimoto H, Ozaki Y, Fujii M. Silicon quantum dots in dielectric scattering media: Broadband enhancement of effective absorption cross section by light trapping. ACS Appl. Mater. Interfaces. 2017;9:19135–19142. PubMed
Karimi Tafti MH, Sadeghzadeh SM. Novel use of nanodiamonds as light-scattering material in dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2016;27:5225–5232.
Wright M, Uddin A. Organic—inorganic hybrid solar cells: A comparative review. Sol. Energy Mater. Sol. Cells. 2012;107:87–111.
Huang J, Huang Z, Yang Y, Zhu H, Lian T. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J. Am. Chem. Soc. 2010;132:4858–4864. PubMed
Blackburn JL. Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett. 2017;2:1598–1613.
Liu Z, et al. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008;20:3924–3930.
Kamat PV. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2011;2:242–251.
Krueger A, Lang D. Functionality is key: Recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 2012;22:890–906.
Lai L, Barnard AS. Tunable charge transfer on selectively functionalised diamond nanoparticles. Diam. Relat. Mater. 2016;68:78–83.
Ōsawa E, Ho D, Huang H, Korobov MV, Rozhkova NN. Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 2009;18:904–909.
Čermák J, et al. Correlation of atomic force microscopy detecting local conductivity and micro-Raman spectroscopy on polymer–fullerene composite films. Phys. Status Solidi RRL Rapid Res.Lett. 2007;1:193–195.
Kozak H, et al. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy. J. Nanopart. Res. 2013;15:66.
Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology. 2009;20:425103. PubMed
Schrand A, Hens SAC, Shenderova O. Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 2009;34:18–74.
Nagata A, et al. Fabrication, nanostructures and electronic properties of nanodiamond-based solar cells. Prog. Nat. Sci. Mater. Int. 2010;20:38–43.
Oku T, et al. Microstructures and photovoltaic properties of C 60 based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. Mater. Technol. 2013;28:21–39.
Xu W-L, et al. Charge transfer dynamics in poly(3-hexylthiophene): Nanodiamond blend films. Diam. Relat. Mater. 2016;64:8–12.
Giambrone N, McCrory M, Kumar A, Ram MK. Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films. 2016;615:226–232.
Ohtani M, Kamat VP, Fukuzumi S. Supramolecular donor–acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. J. Mater. Chem. 2010;20:582–587.
Zhong YL, et al. Diamond-based molecular platform for photoelectrochemistry. J. Am. Chem. Soc. 2008;130:17218–17219. PubMed
Rezek B, et al. Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions. Nanoscale Res. Lett. 2011;6:238. PubMed PMC
Abthagir PS, Saraswathi R. Junction properties of metal/polypyrrole Schottky barriers. J. Appl. Polym. Sci. 2001;81:2127–2135.
Vernitskaya TV, Efimov ON. Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 1997;66:443–457.
Kausaite-Minkstimiene A, Mazeiko V, Ramanaviciene A, Ramanavicius A. Evaluation of chemical synthesis of polypyrrole particles. Colloids Surf. A. 2015;483:224–231.
Leonavicius K, Ramanaviciene A, Ramanavicius A. Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles. Langmuir. 2011;27:10970–10976. PubMed
Armes SP. Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synth. Met. 1987;20:365–371.
Chao TH, March J. A study of polypyrrole synthesized with oxidative transition metal ions. J. Polym. Sci. A Polym. Chem. 1988;26:743–753.
Dias HVR, Fianchini M, Rajapakse RMG. Greener method for high-quality polypyrrole. Polymer. 2006;47:7349–7354.
Satoh M, Kaneto K, Yoshino K. Dependences of electrical and mechanical properties of conducting polypyrrole films on conditions of electrochemical polymerization in an aqueous medium. Synth. Met. 1986;14:289–296.
Pringle JM, et al. Electrochemical synthesis of polypyrrole in ionic liquids. Polymer. 2004;45:1447–1453.
Wang P-C, Yu J-Y. Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React. Funct. Polym. 2012;72:311–316.
Santos MJL, Brolo AG, Girotto EM. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochim. Acta. 2007;52:6141–6145.
Genoud F, Guglielmi M, Nechtschein M, Genies E, Salmon M. ESR study of electrochemical doping in the conducting polymer polypyrrole. Phys. Rev. Lett. 1985;55:118–121. PubMed
Kaufman J, Colaneri N, Scott CB, Street G. Evolution of polaron states into bipolarons in polypyrrole. Phys. Rev. Lett. 1984;53:1005–1008.
Bredas J, Street G. Polarons, bipolarons and solitons in conducting polymers. Acc. Chem. Res. 1985;18:309–315.
Stehlik S, et al. Size and purity control of HPHT nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015;119:27708–27720. PubMed PMC
Stehlik S, et al. Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. PubMed
Klapetek P, et al. Atomic force microscopy characterization of ZnTe epitaxial films. Acta Phys. Slov. 2003;53:223–230.
Miliaieva D, Stehlik S, Stenclova P, Rezek B. Synthesis of polypyrrole on nanodiamonds with hydrogenated and oxidized surfaces: Synthesis of polypyrrole on nanodiamonds. Phys. Status Solidi A. 2016;213:2687–2692.
Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 2011;10:352–356. PubMed
Keilmann F, Hillenbrand R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. A Math. Phys. Eng. Sci. 2004;362:787–805. PubMed
Huth F, et al. Nano-FTIR Absorption Spectroscopy of Molecular Fingerprints at 20 nm Spatial Resolution. Nano Lett. 2012;12:3973–3978. PubMed
Westermeier C, et al. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat. Commun. 2014;5:55. PubMed PMC
Remes Z, et al. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides. Thin Solid Films. 2016;618:130–133.
Frisch, M. et al. Gaussian 09, Revision E.01, Wallingford CT: Gaussian, Inc., Gaussian (2009).
Zhao S, Larsson K. Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces. J. Phys. Chem. C. 2014;118:1944–1957. PubMed PMC
Tian, Y. & Larsson, K. Process of Diamond Surface Termination by Carboxylic and Amino groups – A Quantum Mechanics Approach. DIVA (2014).
Stehlik S, et al. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Sci. Rep. 2016;6:srep38419. PubMed PMC
Matunová P, Jirásek V, Rezek B. Computational study of physisorption and chemisorption of polypyrrole on H-terminated (111) and (100) nanodiamond facets. Phys. Status Solidi A. 2016;213:2672–2679.
Matunová P, Jirásek V, Rezek B. DFT calculations reveal pronounced HOMO–LUMO spatial separation in polypyrrole–nanodiamond systems. Phys. Chem. Chem. Phys. 2019;21:11033–11042. PubMed
Chiesa S, Rossi MJ. The metastable HCl · 6H2O phase - IR spectroscopy, phase transitions and kinetic/thermodynamic properties in the range 170–205 K. Atmosph. Chem. Phys. 2013;13:11905–11923.
Beck P, Gaigeot M-P, Lisy MJ. Anharmonic vibrations of N–H in Cl− (N-methylacetamide)1(H2O), 0–2Ar2 cluster ions. Combined IRPD experiments and BOMD simulations. Phys. Chem. Chem. Phys. 2013;15:16736–16745. PubMed
Valtera S, et al. Dye-stimulated control of conducting polypyrrole morphology. RSC Adv. 2017;7:51495–51505.
Cordeiro E, et al. Staphylococcus aureus biofilm formation on polypyrrole: An electrical overview. Química Nova. 2015;38:1075–1079.
Petit T, Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 2018;89:52–66.
Amenabar I, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 2013;4:2890. PubMed PMC
Bredas JL, Themans B, Andre JM. Bipolarons in polypyrrole chains. Phys. Rev. B. 1983;27:7827.
Zhu D, Zhang L, Ruther RE, Hamers RJ. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013;12:836–841. PubMed
Guyard L, Hapiot P, Neta P. Redox chemistry of bipyrroles: Further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles. J. Phys. Chem. B. 1997;101:5698–5706.
Kokal RK, Kumar PN, Deepa M, Srivastava AK. Lead selenide quantum dots and carbon dots amplify solar conversion capability of a TiO2/CdS photoanode. J. Mater. Chem. A. 2015;3:20715–20726.
Absolute energy levels in nanodiamonds of different origins and surface chemistries