Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article
PubMed
21711759
PubMed Central
PMC3211298
DOI
10.1186/1556-276x-6-238
PII: 1556-276X-6-238
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond.
See more in PubMed
Bolto B, McNeill R, Weiss D. Electronic conduction in polymers - iii. Electronic properties of polypyrrole. Aust J Chem. 1963;16:1090–1103. doi: 10.1071/CH9631090. DOI
Chiang C, Fincher CR, Park Y, Heeger J, Shirakawa H, Louis E, Gau S, MacDiarmid A. Electrical conductivity in doped polyacetylene. Phys Rev Lett. 1977;39:1098–1101. doi: 10.1103/PhysRevLett.39.1098. DOI
Garnier F, Hajlaoui R, Yassar A, Srivastava P. All-polymer field-effect transistor realized by printing techniques. Science. 1994;265:1684–1686. doi: 10.1126/science.265.5179.1684. PubMed DOI
Glenis S, Tourillon G, Garnier F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene. Thin Solid Films. 1968;139:221–231. doi: 10.1016/0040-6090(86)90053-2. DOI
Karg S, Riess W, Dyakonov V, Schwoerer M. Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth Met. 1993;54:427–433. doi: 10.1016/0379-6779(93)91088-J. DOI
Stübinger T, Brütting W. Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. J Appl Phys. 2001;90:3632–3641.
Yu G, Gao J, Hummelen J, Wudl F, Heeger A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789–1791. doi: 10.1126/science.270.5243.1789. DOI
Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. For the bright future - bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% Adv Mater. 2010;22:E135–E138. doi: 10.1002/adma.200903528. PubMed DOI
O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized collodial tio2 films. Nature. 1991;353:737.
Ouyang T, Loh K, Qi D, Wee A, Nesládek M. Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond. Chem Phys Chem. 2008;9:1286–1293. PubMed
Strobel P, Riedel M, Ristein J, Ley L. Surface transfer doping of diamond. Nature. 2004;430:439–441. doi: 10.1038/nature02751. PubMed DOI
Remeš Z, Uzan-Saguy C, Baskin E, Kalish R, Avigal Y, Nesladek M, Koizumi S. Photo-hall effect measurements in p, n and b-doped diamond at low temperatures. Diam Relat Mater. 2004;13:713–717.
Riedel M, Ristein J, Ley L. Recovery of surface conductivity of h-terminated diamond after thermal annealing in vacuum. Phys Rev B. 2004;69:125338. doi: 10.1103/PhysRevB.69.125338. DOI
Takeuchi D, Kato H, Ri G, Yamada T, Vinod P, Hwang D, Nebel C, Okushi H, Yamasaki S. Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces. Appl Phys Lett. 2005;15:152103. doi: 10.1063/1.1900925. DOI
Nebel CE, Rezek B, Shin D, Watanabe H, Yamamoto T. Electronic properties of h-terminated diamond in electrolyte solutions. J Appl Phys. 2006;99:033711. doi: 10.1063/1.2171805. DOI
Rezek B, Nebel C. Kelvin force microscopy on diamond surfaces and devices. Diam Relat Mater. 2005;14:466–469. doi: 10.1016/j.diamond.2005.01.041. DOI
Rezek B, Watanabe H, Shin D, Yamamoto T, Nebel C. Ion-sensitive field effect transistor on hydrogenated diamond. Diam Relat Mater. 2006;15:673–677. doi: 10.1016/j.diamond.2005.12.023. DOI
Hamers RJ, Butler JE, Lasseter T, Nichols BM, Russell JN, Tse KY, Yang W. Molecular and biomolecular monolayers on diamond as an interface to biology. Diam Relat Mater. 2005;14:661–668. doi: 10.1016/j.diamond.2004.09.018. DOI
Härtl A, Schmich E, Garrido J, Hernando J, Catharino SC, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M. Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater. 2004;3:736–742. PubMed
Rezek B, Shin D, Nebel C. Properties of hybridyzed dna arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. Langmuir. 2007;23:7626–7633. doi: 10.1021/la0636661. PubMed DOI
Kanazawa K, Diaz A, Gill W, Grant P, Street G, Gardini G, Kwak J. Polypyrrole: an electrochemically synthesized conducting organic polymer. Synth Met. 1980;1:329–336. doi: 10.1016/0379-6779(80)90022-3. DOI
Mohammadi A, Hasan M, Liedberg B, Lundström I, Salaneck W. Chemical vapour deposition (cvd) of conducting polymers: polypyrrole. Synth Met. 1986;14:189–197. doi: 10.1016/0379-6779(86)90183-9. DOI
Kasisomayajula S, Qi X, Vetter C, Croes K, Pavlacky D. A structural and morphological comparative study between chemically synthesized and photopolymerized poly(pyrrole) J Coat Technol Res. 2010;7:145–158. doi: 10.1007/s11998-009-9186-0. DOI
Nakata M, Kise H. Preparation of polypyrrole-poly(vinyl chloride) composite films by interphase oxidative polymerization. Polym J. 1993;25:91–94. doi: 10.1295/polymj.25.91. DOI
Nakata M, Shiraishi Y, Taga M, Kise H. Synthesis of electrically conductive polypyrrole films by interphase oxidative polymerization. Makromolekulare chemie - Macromol Chem Phys. 1992;193:765–771.
Hong L, Li Y, Yang MJ. Fabrication and ammonia gas sensing of palla-dium/polypyrrole nanocomposite. Sens Actuators B: Chem. 2010;145:25–31. doi: 10.1016/j.snb.2009.11.057. DOI
Yang X, Li L, Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sens Actuators B: Chem. 2010;145:495–500. doi: 10.1016/j.snb.2009.12.065. DOI
Sun A, Li Z, Wei T, Li Y, Cui P. Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens Actuators B: Chem. 2009;142:197–203. doi: 10.1016/j.snb.2009.08.028. DOI
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI
Singh M, Kathuroju P, Jampana N. Polypyrrole based amperometric glucose biosensors. Sens Actuators B: Chem. 2009;143:430–443. doi: 10.1016/j.snb.2009.09.005. DOI
Rajapakse R, Murakami K, Bandara H, Rajapakse R, Velauthamurti K, Wijeratne S. Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction. Electrochim Acta. 2010;55:2490–2497. doi: 10.1016/j.electacta.2009.12.015. DOI
Yuan Y, Zhou S, Zhuang L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells. J Power Sources. 2010;195:3490–3493. doi: 10.1016/j.jpowsour.2009.12.026. DOI
Selvaraj M, Palraj S, Maruthan K, Rajagopal G, Venkatachari G. Synthesis and characterization of polypyrrole composites for corrosion protenction of steel. J Appl Polym Sci. 2010;116:1524–1537.
Wang G, Yang L, Qu Q, Wang B, Wu Y, Holze R. An aqueous rechargeable lithium battery based on doping and intercalation mechanisms. J Solid State Electrochem. 2010;14:865–869. doi: 10.1007/s10008-009-0869-3. DOI
Mihranyan A, Nyholm L, Bennet A, Stromme M. Novel high specific surface area conducting paper material composed of polypyrrole and cladophora cellulose. J Phys Chem B. 2008;112:12249–12255. doi: 10.1021/jp805123w. PubMed DOI
Binning G, Quate C. Atomic force microscope. Phys Rev Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI
Rezek B, Stuchlík J, Fejfar A, Kočka J. Microcrystalline silicon thin films studied by atomic force microscopy with electrical current detection. J Appl Phys. 2002;92:587–593. doi: 10.1063/1.1486032. DOI
Sugimoto Y, Abe M, Jelinek P, Pérez R, Morita S, Custance O. Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007;446:64–67. doi: 10.1038/nature05530. PubMed DOI
Ledinský M, Vetushka A, Stuchlík J, Fejfar A, Kočka J. Raman mapping of micro-crystalline silicon thin films with high spatial resolution. Phys Status Solidi C. 2010;7:704–707.
Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang W. Tip-enhanced raman spectroscopy - its status, challenges and future directions. Chem Phys Lett. 2009;472:1–13. doi: 10.1016/j.cplett.2009.02.023. DOI
Wang R, Wang J, Hao F, Zhang M, Tian Q. Tip-enhanced raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes. Appl Opt. 2010;49:1845–1848. doi: 10.1364/AO.49.001845. PubMed DOI
Čermák J, Rezek B, Cimrová V, Výprachtický D, Ledinský M, Mates T, Fejfar A, Kočka J. Correlation of atomic force microscopy detecting local conductivity and micro-raman spectroscopy on polymer-fullerene composite films. Phys Status Solidi RRL. 2007;1:193–195.
Čermák J, Rezek B, Cimrová V, Fejfar A, Purkrt A, Vanĕček M, Kočka J. Time-resolved opto-electronic properties of poly(3-hexylthiophene-2,5-diyl):fullerene heterostructures detected by Kelvin force microscopy. Thin Solid Films. 2010;519:836–840.
Čermák J, Rezek B, Kromka A, Ledinský M, Kočka J. Electrochemical synthesis and electronic properties of polypyrrole on intrinsic diamond. Diam Relat Mater. 2009;18:1098–1101.
Rezek B, Čermák J, Kromka A, Ledinský M, Kočka J. Photovoltage effects in polypyrrole-diamond nanosystem. Diam Relat Mater. 2009;18:249–252. doi: 10.1016/j.diamond.2008.07.019. DOI
Čermák J, Kromka A, Ledinský M, Rezek B. Illumination-induced charge transfer in polypyrrole-diamond nanosystem. Diam Relat Mater. 2009;18:800–803.
Čermák J, Rezek B, Hubík P, Mareš J, Kromka A, Fejfar A. Photo-conductivity and hall mobility of holes at polypyrrole-diamond interface. Diam Relat Mater. 2010;19:174–177.
Lo KL, Lee MC. Raman scattering of thin film c60/c70 fullerenes. Chin J Phys. 1993;31:653.
Maturová K, Kemerink M, Wienk M, Charrier D, Janssen R. Scanning kelvin probe microscopy on bulk heterojunction polymer blends. Adv Funct Mater. 2009;19:1379–1386.
Chiesa M, Bürgi L, Kim J, Shikler R, Friend R, Sirringhaus H. Correlation between surface photovoltage and blend morphology in polyfluorence-based photodiodes. Nano Lett. 2005;5:559–563. doi: 10.1021/nl047929s. PubMed DOI
Mandoc M, de Boer B, Paasch G, Blom P. Trap-limited electron transport in disordered semiconducting polymers. Pyhs Rev B. 2007;75:193202. doi: 10.1103/PhysRevB.75.193202. DOI
Rezek B, Shin D, Nakamura T, Nebel CE. Geometric properties of covalently bonded DNA on single-crystalline diamond. J Am Chem Soc. 2006;128:3884. doi: 10.1021/ja058181y. PubMed DOI
Rezek B, Shin D, Uetsuka H, Nebel CE. Microscopic diagnostics of DNA molecules on mono-crystalline diamond. Phys Status Solidi A. 2007;204:2888. doi: 10.1002/pssa.200776317. DOI
Kaminski W, Rozsíval V, Jelínek P. Theoretical study of electronic and transport properties of ppy-pt(111) and ppy-c(111):h interfaces. J Phys Condensed Matter. 2010;22:045003. doi: 10.1088/0953-8984/22/4/045003. PubMed DOI
Popovic RS. Hall Effect Devices. Bristol: Adam Hilger; 1991.