Porcupine inhibition enhances hypertrophic cartilage differentiation

. 2025 Jun ; 9 (6) : ziaf048. [epub] 20250329

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40406350

Porcupine (PORCN) is a membrane-bound protein of the endoplasmic reticulum, which modifies Wnt proteins by adding palmitoleic acid. This modification is essential for Wnt ligand secretion. Patients with mutated PORCN display various skeletal abnormalities likely stemming from disrupted Wnt signaling pathways during the chondrocyte differentiation. To uncover the mechanism of PORCN action during chondrogenesis, we used 2 different PORCN inhibitors, C59 and LGK974, in several model systems, including micromasses, 3D cell cultures, long bone tissue cultures, and zebrafish animal model. PORCN inhibitors enhanced cartilaginous extracellular matrix (ECM) production and accelerated chondrocyte differentiation, which resulted in the earlier induction of cellular hypertrophy as well as cartilaginous mass expansion in micromass cultures and cartilaginous organoids. In addition, both PORCN inhibitors expanded the hypertrophic zone and reduced the proliferative zone in the growth plate. This led to a significant increase in cartilaginous tissue and ultimately resulted in the elongation of tibias in the mouse organ cultures. Also, LGK974 treatment of Danio rerio embryos induced expansion of craniofacial cartilage width together with the shortening of the body axis, which was consistent with a phenomenon occurring upon inhibition of non-canonical Wnt signaling. By combining PORCN inhibition with exogenous Wnt proteins activating either canonical/β-catenin (WNT3a) or non-canonical (WNT5a) signaling, we propose that the key mechanism mediating pro-chondrogenic effects of PORCN inhibition is the removal of canonical ligands that prevent chondrocyte differentiation. In summary, our results provide evidence of the distinct role of PORCN in both the early and late stages of cartilage development. Further, our data demonstrate that PORCN inhibitors can be used in the experimental and clinical strategies that need to trigger chondrocyte differentiation and/or cartilage outgrowth.

Zobrazit více v PubMed

Usami  Y, Gunawardena  AT, Iwamoto  M, Enomoto-Iwamoto  M. Wnt Signaling in cartilage development and diseases: lessons from animal studies. Lab Investig. 2016;96(2):186–196. 10.1038/labinvest.2015.142 PubMed DOI PMC

Deshmukh  V, Hu  H, Barroga  C, et al.  A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr Cartil. 2018;26(1):18–27. 10.1016/j.joca.2017.08.015 PubMed DOI

Hwang  SG, Yu  SS, Lee  SW, Chun  JS. Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 2005;579(21):4837–4842. 10.1016/j.febslet.2005.07.067 PubMed DOI

Mbalaviele  G, Sheikh  S, Stains  JP, et al.  Β-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005;94(2):403–418. 10.1002/jcb.20253 PubMed DOI PMC

Day  TF, Guo  X, Garrett-Beal  L, Yang  Y. Wnt/β-catenin Signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate Skeletogenesis. Dev Cell. 2005;8(5):739–750. 10.1016/j.devcel.2005.03.016 PubMed DOI

Yang  Y, Topol  L, Lee  H, Wu  J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003;130(5):1003–1015. 10.1242/dev.00324 PubMed DOI

Gao  B, Song  H, Bishop  K, et al.  Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011;20(2):163–176. 10.1016/j.devcel.2011.01.001 PubMed DOI PMC

Gao  B, Ajima  R, Yang  W, et al.  Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development. 2018;145(8):1-14. 10.1242/dev.163824 PubMed DOI PMC

Duprez  D, Leyns  L, Bonnin  MA, et al.  Expression of Frzb-1 during chick development. Mech Dev. 1999;89(1-2):179–183. 10.1016/S0925-4773(99)00206-3 PubMed DOI

Enomoto-Iwamoto  M, Kitagaki  J, Koyama  E, et al.  The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol. 2002;251(1):142–156. 10.1006/dbio.2002.0802 PubMed DOI

Hartmann  C, Tabin  CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127(14):3141–3159. 10.1242/dev.127.14.3141 PubMed DOI

Hartmann  C, Tabin  CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–351. 10.1016/S0092-8674(01)00222-7 PubMed DOI

Rudnicki  JA, Brown  AMC. Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol. 1997;185(1):104–118. 10.1006/dbio.1997.8536 PubMed DOI

Hofmann  K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci. 2000;25(3):111–112. 10.1016/S0968-0004(99)01539-X PubMed DOI

Tanaka  K, Okabayashi  K, Asashima  M, Perrimon  N, Kadowaki  T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem. 2000;267(13):4300–4311. 10.1046/j.1432-1033.2000.01478.x PubMed DOI

Takada  R, Satomi  Y, Kurata  T, et al.  Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell. 2006;11(6):791–801. 10.1016/j.devcel.2006.10.003 PubMed DOI

Herr  P, Basler  K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol. 2012;361(2):392–402. 10.1016/j.ydbio.2011.11.003 PubMed DOI

Barrott  JJ, Cash  GM, Smith  AP, Barrow  JR, Murtaugh  LC. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci USA. 2011;108(31):12752–12757. 10.1073/pnas.1006437108 PubMed DOI PMC

Biechele  S, Cox  BJ, Rossant  J. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev Biol. 2011;355(2):275–285. 10.1016/j.ydbio.2011.04.029 PubMed DOI

Chen  Q, Takada  R, Takada  S. Loss of porcupine impairs convergent extension during gastrulation in zebrafish. J Cell Sci. 2012;125(Pt 9):2224–2234. 10.1242/jcs.098368 PubMed DOI

Wang  X, Reid Sutton  V, Omar Peraza-Llanes  J, et al.  Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007;39(7):836–838. 10.1038/ng2057 PubMed DOI

Yu  M, Qin  K, Fan  J, et al.  The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis. 2023;11(3):101026. 10.1016/j.gendis.2023.04.042 PubMed DOI PMC

Liu  W, Shaver  TM, Balasa  A, et al.  Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS One. 2012;7(3):e32331. 10.1371/journal.pone.0032331 PubMed DOI PMC

Arlt  A, Kohlschmidt  N, Hentschel  A, et al.  Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis. 2022;17(1):29. 10.1186/s13023-021-02068-w PubMed DOI PMC

Funck-Brentano  T, Nilsson  KH, Brommage  R, et al.  Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. J Endocrinol. 2018;238(1):13–23. 10.1530/JOE-18-0153 PubMed DOI PMC

Lawson  LY, Brodt  MD, Migotsky  N, Chermside-Scabbo  CJ, Palaniappan  R, Silva  MJ. Osteoblast-specific Wnt secretion is required for skeletal homeostasis and loading-induced bone formation in adult mice. J Bone Miner Res. 2022;37(1):108–120. 10.1002/jbmr.4445 PubMed DOI PMC

Feng  J, Zhang  Q, Pu  F, et al.  Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif. 2024;57(6):e13600. 10.1111/cpr.13600 PubMed DOI PMC

von Maltzahn  J, Chang  NC, Bentzinger  CF, Rudnicki  MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–609. 10.1016/j.tcb.2012.07.008 PubMed DOI PMC

Hall  EH, Terezhalmy  GT. Focal dermal hypoplasia syndrome: case report and literature review. J Am Acad Dermatol. 1983;9(3):443–451. 10.1016/S0190-9622(83)70157-X PubMed DOI

Maas  SM, Lombardi  MP, van Essen  AJ, et al.  Phenotype and genotype in 17 patients with Goltz–Gorlin syndrome. J Med Genet. 2009;46(10):716–720. 10.1136/jmg.2009.068403 PubMed DOI

Temple  IK, MacDowall  P, Baraitser  M, Atherton  DJ. Focal dermal hypoplasia (Goltz syndrome). J Med Genet. 1990;27(3):180–187. 10.1136/jmg.27.3.180 PubMed DOI PMC

Proffitt  KD, Virshup  DM. Precise regulation of porcupine activity is required for physiological Wnt signaling. J Biol Chem. 2012;287(41):34167–34178. 10.1074/jbc.M112.381970 PubMed DOI PMC

Shah  K, Panchal  S, Patel  B. Porcupine inhibitors: novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 2021;167:105532. 10.1016/j.phrs.2021.105532 PubMed DOI

Cheng  D, Zhang  G, Han  D, Gao  W, Pan  S. N-(hetero)aryl, 2-(hetero)aryl-substituted acetamides for use as Wnt signaling modulators. Published online September 10, 2010. Accessed February 15, 2025. https://patents.google.com/patent/WO2010101849A1/en

Liu  J, Pan  S, Hsieh  MH, et al.  Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci USA. 2013;110(50):20224–20229. 10.1073/pnas.1314239110 PubMed DOI PMC

Janovská  P, Normant  E, Miskin  H, Bryja  V. Targeting casein kinase 1 (CK1) in hematological cancers. Int J Mol Sci. 2020;21(23):9026. 10.3390/ijms21239026 PubMed DOI PMC

Janovska  P, Verner  J, Kohoutek  J, et al.  Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood. 2018;131(11):1206–1218. 10.1182/blood-2017-05-786947 PubMed DOI

Walton  KM, Fisher  K, Rubitski  D, et al.  Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther. 2009;330(2):430–439. 10.1124/jpet.109.151415 PubMed DOI

Meng  QJ, Maywood  ES, Bechtold  DA, et al.  Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA. 2010;107(34):15240–15245. 10.1073/pnas.1005101107 PubMed DOI PMC

Li  X, Han  Y, Li  G, Zhang  Y, Wang  J, Feng  C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol. 2023;11:1181619. 10.3389/fcell.2023.1181619 PubMed DOI PMC

Hamburger  V, Hamilton  HL. A series of normal stages in the development of the chick embryo. Dev Dyn. 1992;195(4):231–272. 10.1002/aja.1001950404 PubMed DOI

Killinger  M, Kratochvilová  A, Reihs  EI, Matalová  E, Klepárník  K, Rothbauer  M. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng. 2023;17(1):77. 10.1186/s13036-023-00395-z PubMed DOI PMC

Kozhemyakina  E, Lassar  AB, Zelzer  E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817–831. 10.1242/dev.105536 PubMed DOI PMC

Lauing  KL, Cortes  M, Domowicz  MS, Henry  JG, Baria  AT, Schwartz  NB. Aggrecan is required for growth plate cytoarchitecture and differentiation. Dev Biol. 2014;396(2):224–236. 10.1016/j.ydbio.2014.10.005 PubMed DOI PMC

Mello  MA, Tuan  RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999;35(5):262–269. 10.1007/s11626-999-0070-0 PubMed DOI

Daniels  K, Reiter  R, Solursh  M. Chapter 12 micromass cultures of limb and other mesenchyme. In: Bronner-Fraser  M, ed. Methods in Cell Biology. Vol 51. Methods in Avian Embryology. Academic Press; 1996:237–247  10.1016/S0091-679X(08)60631-7. PubMed DOI

Akiyama  H, Lyons  JP, Mori-Akiyama  Y, et al.  Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072–1087. 10.1101/gad.1171104 PubMed DOI PMC

Ng  LJ, Wheatley  S, Muscat  GEO, et al.  SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997;183(1):108–121. 10.1006/dbio.1996.8487 PubMed DOI

Tacchetti  C, Tavella  S, Dozin  B, Quarto  R, Robino  G, Cancedda  R. Cell condensation in chondrogenic differentiation. Exp Cell Res. 1992;200(1):26–33. 10.1016/S0014-4827(05)80067-9 PubMed DOI

Aulthouse  AL, Solursh  M. The detection of a precartilage, blastema-specific marker. Dev Biol. 1987;120(2):377–384. 10.1016/0012-1606(87)90240-5 PubMed DOI

Jho  E-h, Zhang  T, Domon  C, Joo  CK, Freund  JN, Costantini  F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22(4):1172–1183. 10.1128/MCB.22.4.1172-1183.2002 PubMed DOI PMC

Torres  VI, Godoy  JA, Inestrosa  NC. Modulating Wnt signaling at the root: porcupine and Wnt acylation. Pharmacol Ther. 2019;198(June):34–45. 10.1016/j.pharmthera.2019.02.009 PubMed DOI

Ma  B, Landman  EBM, Miclea  RL, et al.  WNT Signaling and cartilage: of mice and men. Calcif Tissue Int. 2013;92(5):399–411. 10.1007/s00223-012-9675-5 PubMed DOI

Akiyama  H, Chaboissier  MC, Martin  JF, Schedl  A, de Crombrugghe  B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–2828. 10.1101/gad.1017802 PubMed DOI PMC

St-Jacques  B, Hammerschmidt  M, McMahon  AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–2086. PubMed PMC

Humke  EW, Dorn  KV, Milenkovic  L, Scott  MP, Rohatgi  R. The output of hedgehog signaling is controlled by the dynamic association between suppressor of fused and the Gli proteins. Genes Dev. 2010;24(7):670–682. 10.1101/gad.1902910 PubMed DOI PMC

Engsig  MT, Chen  QJ, Vu  TH, et al.  Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151(4):879–889. PubMed PMC

Zoch  ML, Clemens  TL, Riddle  RC. New insights into the biology of osteocalcin. Bone. 2016;82(Jan):42–49. 10.1016/j.bone.2015.05.046 PubMed DOI PMC

Sánchez-Porras  D, Durand-Herrera  D, Paes  AB, et al.  Ex vivo generation and characterization of human hyaline and elastic cartilaginous microtissues for tissue engineering applications. Biomedicines. 2021;9(3):292. 10.3390/biomedicines9030292 PubMed DOI PMC

Irie  Y, Mizumoto  H, Fujino  S, Kajiwara  T. Development of articular cartilage grafts using organoid formation techniques. Transplant Proc. 2008;40(2):631–633. 10.1016/j.transproceed.2008.01.024 PubMed DOI

Sun  Y, Wu  Q, Dai  K, You  Y, Jiang  W. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Sig Transduct Target Ther. 2021;6(1):380–384. 10.1038/s41392-021-00675-4 PubMed DOI PMC

Matchkov  VV, Krivoi  II. Specialized functional diversity and interactions of the Na, K-ATPase. Front Physiol. 2016;7:179. PubMed PMC

Aghajanian  P, Mohan  S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 2018;6(1):1–9. 10.1038/s41413-018-0021-z PubMed DOI PMC

Yang  K, Hitomi  M, Stacey  DW. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div. 2006;1(1):32. 10.1186/1747-1028-1-32 PubMed DOI PMC

Goldring  MB, Tsuchimochi  K, Ijiri  K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33–44. 10.1002/jcb.20652 PubMed DOI

Long  F, Ornitz  DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334. 10.1101/cshperspect.a008334 PubMed DOI PMC

Church  V, Nohno  T, Linker  C, Marcelle  C, Francis-West  P. Wnt regulation of chondrocyte differentiation. J Cell Sci. 2002;115(24):4809–4818. 10.1242/jcs.00152 PubMed DOI

Hartmann  C. Wnt-signaling and skeletogenesis. J Musculoskelet Neuronal Interact. 2002;2(3):274–276 PubMed

Nalesso  G, Sherwood  J, Bertrand  J, et al.  WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol. 2011;193(3):551–564. 10.1083/jcb.201011051 PubMed DOI PMC

Später  D, Hill  TP, O’Sullivan  RJ, Gruber  M, Conner  DA, Hartmann  C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–3049. 10.1242/dev.02471 PubMed DOI

Im  GI, Quan  Z. The effects of Wnt inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Eng A. 2010;16(7):2405–2413. 10.1089/ten.tea.2009.0359 PubMed DOI

Bastakoty  D, Saraswati  S, Cates  J, Lee  E, Nanney  LB, Young  PP. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J. 2015;29(12):4881–4892. 10.1096/fj.15-275941 PubMed DOI PMC

Yuasa  T, Otani  T, Koike  T, Iwamoto  M, Enomoto-Iwamoto  M. Wnt/β-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Investig. 2008;88(3):264–274. 10.1038/labinvest.3700747 PubMed DOI

Daumer  KM, Tufan  AC, Tuan  RS. Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J Cell Biochem. 2004;93(3):526–541. 10.1002/jcb.20190 PubMed DOI

Long  F, Chung  U, Ohba  S, McMahon  J, Kronenberg  HM, McMahon  AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131(6):1309–1318. 10.1242/dev.01006 PubMed DOI

Mak  KK, Chen  MH, Day  TF, Chuang  PT, Yang  Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–3707. 10.1242/dev.02546 PubMed DOI

Kobayashi  T, Soegiarto  DW, Yang  Y, et al.  Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005;115(7):1734–1742. 10.1172/JCI24397 PubMed DOI PMC

Mak  KK, Kronenberg  HM, Chuang  PT, Mackem  S, Yang  Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008;135(11):1947–1956. 10.1242/dev.018044 PubMed DOI PMC

Diederichs  S, Tonnier  V, März  M, Dreher  SI, Geisbüsch  A, Richter  W. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cell Mol Life Sci. 2019;76(19):3875–3889. 10.1007/s00018-019-03099-0 PubMed DOI PMC

Wuelling  M, Schneider  S, Schröther  VA, Waterkamp  C, Hoffmann  D, Vortkamp  A. Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Dev Biol. 2020;457(1):104–118. 10.1016/j.ydbio.2019.09.012 PubMed DOI

Dreher  SI, Fischer  J, Walker  T, Diederichs  S, Richter  W. Significance of MEF2C and RUNX3 regulation for endochondral differentiation of human mesenchymal progenitor cells. Front Cell Dev Biol. 2020;8:81. 10.3389/fcell.2020.00081 PubMed DOI PMC

Regard  JB, Zhong  Z, Williams  BO, Yang  Y. Wnt Signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4(12):a007997. 10.1101/cshperspect.a007997 PubMed DOI PMC

Yuasa  T, Kondo  N, Yasuhara  R, et al.  Transient activation of Wnt/β-catenin Signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol. 2009;175(5):1993–2003. 10.2353/ajpath.2009.081173 PubMed DOI PMC

Houben  A, Kostanova-Poliakova  D, Weissenböck  M, et al.  Β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development. 2016;143(20):3826–3838. 10.1242/dev.137489 PubMed DOI PMC

Golovchenko  S, Hattori  T, Hartmann  C, et al.  Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone. 2013;55(1):102–112. 10.1016/j.bone.2013.03.019 PubMed DOI

Mallatt  J. The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zoolog Sci. 2008;25(10):990–998. 10.2108/zsj.25.990 PubMed DOI

Mork  L, Crump  G. Zebrafish craniofacial development: a window into early patterning. Curr Top Dev Biol. 2015;115:235–269. 10.1016/bs.ctdb.2015.07.001 PubMed DOI PMC

Ababneh  KT, Al-Khateeb  TH. Immunolocalization of proteoglycans in Meckel’s cartilage of the rat. Open Dent J. 2009;3(1):177–183. 10.2174/1874210600903010177 PubMed DOI PMC

Shimo  T, Kanyama  M, Wu  C, et al.  Expression and roles of connective tissue growth factor in Meckel’s cartilage development. Dev Dyn. 2004;231(1):136–147. 10.1002/dvdy.20109 PubMed DOI

Silbermann  M, von der Mark  K. An immunohistochemical study of the distribution of matrical proteins in the mandibular condyle of neonatal mice. I. Collagens. J Anat. 1990;170:11–22. PubMed PMC

Baas  D, Malbouyres  M, Haftek-Terreau  Z, Le Guellec  D, Ruggiero  F. Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biol. 2009;28(8):490–502. 10.1016/j.matbio.2009.07.004 PubMed DOI

Piotrowski  T, Schilling  TF, Brand  M, et al.  Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development. 1996;123(1):345–356. 10.1242/dev.123.1.345 PubMed DOI

Hu  L, Chen  W, Qian  A, Li  YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024;12(1):1–33. 10.1038/s41413-024-00342-8 PubMed DOI PMC

Brunt  LH, Begg  K, Kague  E, Cross  S, Hammond  CL. Wnt signalling controls the response to mechanical loading during zebrafish joint development. Development. 2017;144(15):2798–2809. 10.1242/dev.153528 PubMed DOI PMC

Sisson  BE, Dale  RM, Mui  SR, Topczewska  JM, Topczewski  J. A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis. Mech Dev. 2015;138(Pt 3):279–290. 10.1016/j.mod.2015.10.001 PubMed DOI PMC

Curtin  E, Hickey  G, Kamel  G, Davidson  AJ, Liao  EC. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev. 2011;128(1-2):104–115. 10.1016/j.mod.2010.11.003 PubMed DOI

Choe  CP, Collazo  A, Trinh  LA, Pan  L, Moens  CB, Crump  JG. Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev Cell. 2013;24(3):296–309. 10.1016/j.devcel.2012.12.003 PubMed DOI PMC

Ling  IT, Rochard  L, Liao  EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol. 2017;421(2):219–232. 10.1016/j.ydbio.2016.11.016 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...