Porcupine inhibition enhances hypertrophic cartilage differentiation
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
40406350
PubMed Central
PMC12097805
DOI
10.1093/jbmrpl/ziaf048
PII: ziaf048
Knihovny.cz E-resources
- Keywords
- Wnt, cartilage, chondrogenesis, hypertrophy, jaw hypoplasia, micromass cultures, orofacial anomalies, porcupine, tibia,
- Publication type
- Journal Article MeSH
Porcupine (PORCN) is a membrane-bound protein of the endoplasmic reticulum, which modifies Wnt proteins by adding palmitoleic acid. This modification is essential for Wnt ligand secretion. Patients with mutated PORCN display various skeletal abnormalities likely stemming from disrupted Wnt signaling pathways during the chondrocyte differentiation. To uncover the mechanism of PORCN action during chondrogenesis, we used 2 different PORCN inhibitors, C59 and LGK974, in several model systems, including micromasses, 3D cell cultures, long bone tissue cultures, and zebrafish animal model. PORCN inhibitors enhanced cartilaginous extracellular matrix (ECM) production and accelerated chondrocyte differentiation, which resulted in the earlier induction of cellular hypertrophy as well as cartilaginous mass expansion in micromass cultures and cartilaginous organoids. In addition, both PORCN inhibitors expanded the hypertrophic zone and reduced the proliferative zone in the growth plate. This led to a significant increase in cartilaginous tissue and ultimately resulted in the elongation of tibias in the mouse organ cultures. Also, LGK974 treatment of Danio rerio embryos induced expansion of craniofacial cartilage width together with the shortening of the body axis, which was consistent with a phenomenon occurring upon inhibition of non-canonical Wnt signaling. By combining PORCN inhibition with exogenous Wnt proteins activating either canonical/β-catenin (WNT3a) or non-canonical (WNT5a) signaling, we propose that the key mechanism mediating pro-chondrogenic effects of PORCN inhibition is the removal of canonical ligands that prevent chondrocyte differentiation. In summary, our results provide evidence of the distinct role of PORCN in both the early and late stages of cartilage development. Further, our data demonstrate that PORCN inhibitors can be used in the experimental and clinical strategies that need to trigger chondrocyte differentiation and/or cartilage outgrowth.
See more in PubMed
Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M. Wnt Signaling in cartilage development and diseases: lessons from animal studies. Lab Investig. 2016;96(2):186–196. 10.1038/labinvest.2015.142 PubMed DOI PMC
Deshmukh V, Hu H, Barroga C, et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr Cartil. 2018;26(1):18–27. 10.1016/j.joca.2017.08.015 PubMed DOI
Hwang SG, Yu SS, Lee SW, Chun JS. Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 2005;579(21):4837–4842. 10.1016/j.febslet.2005.07.067 PubMed DOI
Mbalaviele G, Sheikh S, Stains JP, et al. Β-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005;94(2):403–418. 10.1002/jcb.20253 PubMed DOI PMC
Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/β-catenin Signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate Skeletogenesis. Dev Cell. 2005;8(5):739–750. 10.1016/j.devcel.2005.03.016 PubMed DOI
Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003;130(5):1003–1015. 10.1242/dev.00324 PubMed DOI
Gao B, Song H, Bishop K, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011;20(2):163–176. 10.1016/j.devcel.2011.01.001 PubMed DOI PMC
Gao B, Ajima R, Yang W, et al. Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity. Development. 2018;145(8):1-14. 10.1242/dev.163824 PubMed DOI PMC
Duprez D, Leyns L, Bonnin MA, et al. Expression of Frzb-1 during chick development. Mech Dev. 1999;89(1-2):179–183. 10.1016/S0925-4773(99)00206-3 PubMed DOI
Enomoto-Iwamoto M, Kitagaki J, Koyama E, et al. The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol. 2002;251(1):142–156. 10.1006/dbio.2002.0802 PubMed DOI
Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127(14):3141–3159. 10.1242/dev.127.14.3141 PubMed DOI
Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–351. 10.1016/S0092-8674(01)00222-7 PubMed DOI
Rudnicki JA, Brown AMC. Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol. 1997;185(1):104–118. 10.1006/dbio.1997.8536 PubMed DOI
Hofmann K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem Sci. 2000;25(3):111–112. 10.1016/S0968-0004(99)01539-X PubMed DOI
Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem. 2000;267(13):4300–4311. 10.1046/j.1432-1033.2000.01478.x PubMed DOI
Takada R, Satomi Y, Kurata T, et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell. 2006;11(6):791–801. 10.1016/j.devcel.2006.10.003 PubMed DOI
Herr P, Basler K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol. 2012;361(2):392–402. 10.1016/j.ydbio.2011.11.003 PubMed DOI
Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci USA. 2011;108(31):12752–12757. 10.1073/pnas.1006437108 PubMed DOI PMC
Biechele S, Cox BJ, Rossant J. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev Biol. 2011;355(2):275–285. 10.1016/j.ydbio.2011.04.029 PubMed DOI
Chen Q, Takada R, Takada S. Loss of porcupine impairs convergent extension during gastrulation in zebrafish. J Cell Sci. 2012;125(Pt 9):2224–2234. 10.1242/jcs.098368 PubMed DOI
Wang X, Reid Sutton V, Omar Peraza-Llanes J, et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet. 2007;39(7):836–838. 10.1038/ng2057 PubMed DOI
Yu M, Qin K, Fan J, et al. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis. 2023;11(3):101026. 10.1016/j.gendis.2023.04.042 PubMed DOI PMC
Liu W, Shaver TM, Balasa A, et al. Deletion of Porcn in mice leads to multiple developmental defects and models human focal dermal hypoplasia (Goltz syndrome). PLoS One. 2012;7(3):e32331. 10.1371/journal.pone.0032331 PubMed DOI PMC
Arlt A, Kohlschmidt N, Hentschel A, et al. Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects. Orphanet J Rare Dis. 2022;17(1):29. 10.1186/s13023-021-02068-w PubMed DOI PMC
Funck-Brentano T, Nilsson KH, Brommage R, et al. Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice. J Endocrinol. 2018;238(1):13–23. 10.1530/JOE-18-0153 PubMed DOI PMC
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-specific Wnt secretion is required for skeletal homeostasis and loading-induced bone formation in adult mice. J Bone Miner Res. 2022;37(1):108–120. 10.1002/jbmr.4445 PubMed DOI PMC
Feng J, Zhang Q, Pu F, et al. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif. 2024;57(6):e13600. 10.1111/cpr.13600 PubMed DOI PMC
von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–609. 10.1016/j.tcb.2012.07.008 PubMed DOI PMC
Hall EH, Terezhalmy GT. Focal dermal hypoplasia syndrome: case report and literature review. J Am Acad Dermatol. 1983;9(3):443–451. 10.1016/S0190-9622(83)70157-X PubMed DOI
Maas SM, Lombardi MP, van Essen AJ, et al. Phenotype and genotype in 17 patients with Goltz–Gorlin syndrome. J Med Genet. 2009;46(10):716–720. 10.1136/jmg.2009.068403 PubMed DOI
Temple IK, MacDowall P, Baraitser M, Atherton DJ. Focal dermal hypoplasia (Goltz syndrome). J Med Genet. 1990;27(3):180–187. 10.1136/jmg.27.3.180 PubMed DOI PMC
Proffitt KD, Virshup DM. Precise regulation of porcupine activity is required for physiological Wnt signaling. J Biol Chem. 2012;287(41):34167–34178. 10.1074/jbc.M112.381970 PubMed DOI PMC
Shah K, Panchal S, Patel B. Porcupine inhibitors: novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 2021;167:105532. 10.1016/j.phrs.2021.105532 PubMed DOI
Cheng D, Zhang G, Han D, Gao W, Pan S. N-(hetero)aryl, 2-(hetero)aryl-substituted acetamides for use as Wnt signaling modulators. Published online September 10, 2010. Accessed February 15, 2025. https://patents.google.com/patent/WO2010101849A1/en
Liu J, Pan S, Hsieh MH, et al. Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci USA. 2013;110(50):20224–20229. 10.1073/pnas.1314239110 PubMed DOI PMC
Janovská P, Normant E, Miskin H, Bryja V. Targeting casein kinase 1 (CK1) in hematological cancers. Int J Mol Sci. 2020;21(23):9026. 10.3390/ijms21239026 PubMed DOI PMC
Janovska P, Verner J, Kohoutek J, et al. Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood. 2018;131(11):1206–1218. 10.1182/blood-2017-05-786947 PubMed DOI
Walton KM, Fisher K, Rubitski D, et al. Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther. 2009;330(2):430–439. 10.1124/jpet.109.151415 PubMed DOI
Meng QJ, Maywood ES, Bechtold DA, et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA. 2010;107(34):15240–15245. 10.1073/pnas.1005101107 PubMed DOI PMC
Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol. 2023;11:1181619. 10.3389/fcell.2023.1181619 PubMed DOI PMC
Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. Dev Dyn. 1992;195(4):231–272. 10.1002/aja.1001950404 PubMed DOI
Killinger M, Kratochvilová A, Reihs EI, Matalová E, Klepárník K, Rothbauer M. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. J Biol Eng. 2023;17(1):77. 10.1186/s13036-023-00395-z PubMed DOI PMC
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817–831. 10.1242/dev.105536 PubMed DOI PMC
Lauing KL, Cortes M, Domowicz MS, Henry JG, Baria AT, Schwartz NB. Aggrecan is required for growth plate cytoarchitecture and differentiation. Dev Biol. 2014;396(2):224–236. 10.1016/j.ydbio.2014.10.005 PubMed DOI PMC
Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999;35(5):262–269. 10.1007/s11626-999-0070-0 PubMed DOI
Daniels K, Reiter R, Solursh M. Chapter 12 micromass cultures of limb and other mesenchyme. In: Bronner-Fraser M, ed. Methods in Cell Biology. Vol 51. Methods in Avian Embryology. Academic Press; 1996:237–247 10.1016/S0091-679X(08)60631-7. PubMed DOI
Akiyama H, Lyons JP, Mori-Akiyama Y, et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072–1087. 10.1101/gad.1171104 PubMed DOI PMC
Ng LJ, Wheatley S, Muscat GEO, et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997;183(1):108–121. 10.1006/dbio.1996.8487 PubMed DOI
Tacchetti C, Tavella S, Dozin B, Quarto R, Robino G, Cancedda R. Cell condensation in chondrogenic differentiation. Exp Cell Res. 1992;200(1):26–33. 10.1016/S0014-4827(05)80067-9 PubMed DOI
Aulthouse AL, Solursh M. The detection of a precartilage, blastema-specific marker. Dev Biol. 1987;120(2):377–384. 10.1016/0012-1606(87)90240-5 PubMed DOI
Jho E-h, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22(4):1172–1183. 10.1128/MCB.22.4.1172-1183.2002 PubMed DOI PMC
Torres VI, Godoy JA, Inestrosa NC. Modulating Wnt signaling at the root: porcupine and Wnt acylation. Pharmacol Ther. 2019;198(June):34–45. 10.1016/j.pharmthera.2019.02.009 PubMed DOI
Ma B, Landman EBM, Miclea RL, et al. WNT Signaling and cartilage: of mice and men. Calcif Tissue Int. 2013;92(5):399–411. 10.1007/s00223-012-9675-5 PubMed DOI
Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–2828. 10.1101/gad.1017802 PubMed DOI PMC
St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–2086. PubMed PMC
Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R. The output of hedgehog signaling is controlled by the dynamic association between suppressor of fused and the Gli proteins. Genes Dev. 2010;24(7):670–682. 10.1101/gad.1902910 PubMed DOI PMC
Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151(4):879–889. PubMed PMC
Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82(Jan):42–49. 10.1016/j.bone.2015.05.046 PubMed DOI PMC
Sánchez-Porras D, Durand-Herrera D, Paes AB, et al. Ex vivo generation and characterization of human hyaline and elastic cartilaginous microtissues for tissue engineering applications. Biomedicines. 2021;9(3):292. 10.3390/biomedicines9030292 PubMed DOI PMC
Irie Y, Mizumoto H, Fujino S, Kajiwara T. Development of articular cartilage grafts using organoid formation techniques. Transplant Proc. 2008;40(2):631–633. 10.1016/j.transproceed.2008.01.024 PubMed DOI
Sun Y, Wu Q, Dai K, You Y, Jiang W. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Sig Transduct Target Ther. 2021;6(1):380–384. 10.1038/s41392-021-00675-4 PubMed DOI PMC
Matchkov VV, Krivoi II. Specialized functional diversity and interactions of the Na, K-ATPase. Front Physiol. 2016;7:179. PubMed PMC
Aghajanian P, Mohan S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 2018;6(1):1–9. 10.1038/s41413-018-0021-z PubMed DOI PMC
Yang K, Hitomi M, Stacey DW. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div. 2006;1(1):32. 10.1186/1747-1028-1-32 PubMed DOI PMC
Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33–44. 10.1002/jcb.20652 PubMed DOI
Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334. 10.1101/cshperspect.a008334 PubMed DOI PMC
Church V, Nohno T, Linker C, Marcelle C, Francis-West P. Wnt regulation of chondrocyte differentiation. J Cell Sci. 2002;115(24):4809–4818. 10.1242/jcs.00152 PubMed DOI
Hartmann C. Wnt-signaling and skeletogenesis. J Musculoskelet Neuronal Interact. 2002;2(3):274–276 PubMed
Nalesso G, Sherwood J, Bertrand J, et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol. 2011;193(3):551–564. 10.1083/jcb.201011051 PubMed DOI PMC
Später D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–3049. 10.1242/dev.02471 PubMed DOI
Im GI, Quan Z. The effects of Wnt inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Eng A. 2010;16(7):2405–2413. 10.1089/ten.tea.2009.0359 PubMed DOI
Bastakoty D, Saraswati S, Cates J, Lee E, Nanney LB, Young PP. Inhibition of Wnt/β-catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB J. 2015;29(12):4881–4892. 10.1096/fj.15-275941 PubMed DOI PMC
Yuasa T, Otani T, Koike T, Iwamoto M, Enomoto-Iwamoto M. Wnt/β-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Investig. 2008;88(3):264–274. 10.1038/labinvest.3700747 PubMed DOI
Daumer KM, Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J Cell Biochem. 2004;93(3):526–541. 10.1002/jcb.20190 PubMed DOI
Long F, Chung U, Ohba S, McMahon J, Kronenberg HM, McMahon AP. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development. 2004;131(6):1309–1318. 10.1242/dev.01006 PubMed DOI
Mak KK, Chen MH, Day TF, Chuang PT, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development. 2006;133(18):3695–3707. 10.1242/dev.02546 PubMed DOI
Kobayashi T, Soegiarto DW, Yang Y, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005;115(7):1734–1742. 10.1172/JCI24397 PubMed DOI PMC
Mak KK, Kronenberg HM, Chuang PT, Mackem S, Yang Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008;135(11):1947–1956. 10.1242/dev.018044 PubMed DOI PMC
Diederichs S, Tonnier V, März M, Dreher SI, Geisbüsch A, Richter W. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cell Mol Life Sci. 2019;76(19):3875–3889. 10.1007/s00018-019-03099-0 PubMed DOI PMC
Wuelling M, Schneider S, Schröther VA, Waterkamp C, Hoffmann D, Vortkamp A. Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Dev Biol. 2020;457(1):104–118. 10.1016/j.ydbio.2019.09.012 PubMed DOI
Dreher SI, Fischer J, Walker T, Diederichs S, Richter W. Significance of MEF2C and RUNX3 regulation for endochondral differentiation of human mesenchymal progenitor cells. Front Cell Dev Biol. 2020;8:81. 10.3389/fcell.2020.00081 PubMed DOI PMC
Regard JB, Zhong Z, Williams BO, Yang Y. Wnt Signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012;4(12):a007997. 10.1101/cshperspect.a007997 PubMed DOI PMC
Yuasa T, Kondo N, Yasuhara R, et al. Transient activation of Wnt/β-catenin Signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol. 2009;175(5):1993–2003. 10.2353/ajpath.2009.081173 PubMed DOI PMC
Houben A, Kostanova-Poliakova D, Weissenböck M, et al. Β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development. 2016;143(20):3826–3838. 10.1242/dev.137489 PubMed DOI PMC
Golovchenko S, Hattori T, Hartmann C, et al. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone. 2013;55(1):102–112. 10.1016/j.bone.2013.03.019 PubMed DOI
Mallatt J. The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zoolog Sci. 2008;25(10):990–998. 10.2108/zsj.25.990 PubMed DOI
Mork L, Crump G. Zebrafish craniofacial development: a window into early patterning. Curr Top Dev Biol. 2015;115:235–269. 10.1016/bs.ctdb.2015.07.001 PubMed DOI PMC
Ababneh KT, Al-Khateeb TH. Immunolocalization of proteoglycans in Meckel’s cartilage of the rat. Open Dent J. 2009;3(1):177–183. 10.2174/1874210600903010177 PubMed DOI PMC
Shimo T, Kanyama M, Wu C, et al. Expression and roles of connective tissue growth factor in Meckel’s cartilage development. Dev Dyn. 2004;231(1):136–147. 10.1002/dvdy.20109 PubMed DOI
Silbermann M, von der Mark K. An immunohistochemical study of the distribution of matrical proteins in the mandibular condyle of neonatal mice. I. Collagens. J Anat. 1990;170:11–22. PubMed PMC
Baas D, Malbouyres M, Haftek-Terreau Z, Le Guellec D, Ruggiero F. Craniofacial cartilage morphogenesis requires zebrafish col11a1 activity. Matrix Biol. 2009;28(8):490–502. 10.1016/j.matbio.2009.07.004 PubMed DOI
Piotrowski T, Schilling TF, Brand M, et al. Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development. 1996;123(1):345–356. 10.1242/dev.123.1.345 PubMed DOI
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024;12(1):1–33. 10.1038/s41413-024-00342-8 PubMed DOI PMC
Brunt LH, Begg K, Kague E, Cross S, Hammond CL. Wnt signalling controls the response to mechanical loading during zebrafish joint development. Development. 2017;144(15):2798–2809. 10.1242/dev.153528 PubMed DOI PMC
Sisson BE, Dale RM, Mui SR, Topczewska JM, Topczewski J. A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis. Mech Dev. 2015;138(Pt 3):279–290. 10.1016/j.mod.2015.10.001 PubMed DOI PMC
Curtin E, Hickey G, Kamel G, Davidson AJ, Liao EC. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev. 2011;128(1-2):104–115. 10.1016/j.mod.2010.11.003 PubMed DOI
Choe CP, Collazo A, Trinh LA, Pan L, Moens CB, Crump JG. Wnt-dependent epithelial transitions drive pharyngeal pouch formation. Dev Cell. 2013;24(3):296–309. 10.1016/j.devcel.2012.12.003 PubMed DOI PMC
Ling IT, Rochard L, Liao EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol. 2017;421(2):219–232. 10.1016/j.ydbio.2016.11.016 PubMed DOI PMC