-
Je něco špatně v tomto záznamu ?
Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs
J. Dumková, T. Smutná, L. Vrlíková, P. Le Coustumer, Z. Večeřa, B. Dočekal, P. Mikuška, L. Čapka, P. Fictum, A. Hampl, M. Buchtová,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2004-12-01
BioMedCentral Open Access
od 2004
Directory of Open Access Journals
od 2004
Free Medical Journals
od 2004
PubMed Central
od 2004
Europe PubMed Central
od 2004
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2004-12-01
Open Access Digital Library
od 2004-01-01
Open Access Digital Library
od 2004-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2004
Springer Nature OA/Free Journals
od 2004-12-01
- MeSH
- hodnocení rizik MeSH
- inhalační expozice MeSH
- játra účinky léků metabolismus ultrastruktura MeSH
- kovové nanočástice * aplikace a dávkování chemie toxicita MeSH
- látky znečišťující životní prostředí aplikace a dávkování chemie farmakokinetika toxicita MeSH
- ledviny účinky léků metabolismus ultrastruktura MeSH
- mozek účinky léků metabolismus ultrastruktura MeSH
- myši inbrední ICR MeSH
- olovo aplikace a dávkování chemie farmakokinetika toxicita MeSH
- oxidy aplikace a dávkování chemie farmakokinetika toxicita MeSH
- plíce účinky léků metabolismus ultrastruktura MeSH
- slezina účinky léků metabolismus ultrastruktura MeSH
- tkáňová distribuce MeSH
- toxikokinetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
BACKGROUND: Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS: Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS: Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS: Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033438
- 003
- CZ-PrNML
- 005
- 20181015114504.0
- 007
- ta
- 008
- 181008s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12989-017-0236-y $2 doi
- 035 __
- $a (PubMed)29268755
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Dumková, J $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
- 245 10
- $a Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs / $c J. Dumková, T. Smutná, L. Vrlíková, P. Le Coustumer, Z. Večeřa, B. Dočekal, P. Mikuška, L. Čapka, P. Fictum, A. Hampl, M. Buchtová,
- 520 9_
- $a BACKGROUND: Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS: Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS: Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS: Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mozek $x účinky léků $x metabolismus $x ultrastruktura $7 D001921
- 650 _2
- $a látky znečišťující životní prostředí $x aplikace a dávkování $x chemie $x farmakokinetika $x toxicita $7 D004785
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a inhalační expozice $7 D019570
- 650 _2
- $a ledviny $x účinky léků $x metabolismus $x ultrastruktura $7 D007668
- 650 _2
- $a olovo $x aplikace a dávkování $x chemie $x farmakokinetika $x toxicita $7 D007854
- 650 _2
- $a játra $x účinky léků $x metabolismus $x ultrastruktura $7 D008099
- 650 _2
- $a plíce $x účinky léků $x metabolismus $x ultrastruktura $7 D008168
- 650 12
- $a kovové nanočástice $x aplikace a dávkování $x chemie $x toxicita $7 D053768
- 650 _2
- $a myši inbrední ICR $7 D008813
- 650 _2
- $a oxidy $x aplikace a dávkování $x chemie $x farmakokinetika $x toxicita $7 D010087
- 650 _2
- $a hodnocení rizik $7 D018570
- 650 _2
- $a slezina $x účinky léků $x metabolismus $x ultrastruktura $7 D013154
- 650 _2
- $a tkáňová distribuce $7 D014018
- 650 _2
- $a toxikokinetika $7 D066007
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Smutná, T $u Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Vrlíková, L $u Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Le Coustumer, P $u Bordeaux University, UF STE, Allée G. Saint-Hilaire, 33615, Pessac Cedex, France. UMR 5254 IPREM, CNRS/UPPA, Technopole Hélioparc, 2 av P. Angot, 64053, Pau Cedex9, France. EA 4592 Georessources & Environnement/ Bordeaux Montaigne University-IPNB ENSEGID, Allée F. Daguin, 33615, Pessac Cedex, France.
- 700 1_
- $a Večeřa, Z $u Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Dočekal, B $u Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Mikuška, P $u Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Čapka, L $u Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00, Brno, Czech Republic.
- 700 1_
- $a Fictum, P $u Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic.
- 700 1_
- $a Hampl, A $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
- 700 1_
- $a Buchtová, M $u Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00, Brno, Czech Republic. buchtova@iach.cz. Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic. buchtova@iach.cz.
- 773 0_
- $w MED00180529 $t Particle and fibre toxicology $x 1743-8977 $g Roč. 14, č. 1 (2017), s. 55
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29268755 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181015115001 $b ABA008
- 999 __
- $a ok $b bmc $g 1340152 $s 1030432
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 14 $c 1 $d 55 $e 20171221 $i 1743-8977 $m Particle and fibre toxicology $n Part Fibre Toxicol $x MED00180529
- LZP __
- $a Pubmed-20181008