Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.
- MeSH
- biologické markery metabolismus MeSH
- inhalační expozice škodlivé účinky analýza MeSH
- játra účinky léků metabolismus MeSH
- ledviny účinky léků metabolismus MeSH
- lidé MeSH
- membránové lipidy metabolismus MeSH
- mozek účinky léků metabolismus MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice metabolismus toxicita MeSH
- olovo metabolismus toxicita MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- oxidy metabolismus toxicita MeSH
- peroxidace lipidů účinky léků MeSH
- plíce účinky léků metabolismus MeSH
- poškození DNA * MeSH
- testy subchronické toxicity MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82 nm, mass concentration: 31.7 μg CdO/m3, total deposited dose: 0.195 μg CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-β2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.
- MeSH
- aplikace inhalační MeSH
- buněčná imunita účinky léků MeSH
- cytokiny metabolismus MeSH
- fibróza chemicky indukované MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- ledviny účinky léků patologie MeSH
- lymfatické uzliny účinky léků MeSH
- myši inbrední ICR MeSH
- oxidační stres účinky léků MeSH
- oxidy aplikace a dávkování toxicita MeSH
- slezina účinky léků MeSH
- sloučeniny kadmia aplikace a dávkování toxicita MeSH
- střeva účinky léků MeSH
- thymus účinky léků MeSH
- tibie účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although plants are often exposed to atmospheric nanoparticles (NPs), the mechanism of NP deposition and their effects on physiology and metabolism, and particularly in combination with other stressors, are not yet understood. Exploring interactions between stressors is particularly important for understanding plant responses in urban environments where elevated temperatures can be associated with air pollution. Accordingly, 3-year-old spruce seedlings were exposed for 2 weeks to aerial cadmium oxide (CdO) NPs of environmentally relevant size (8-62 nm) and concentration (2 × 105 cm-3). While half the seedlings were initially acclimated to high temperature (35 °C) and vapour pressure deficit (VPD; 2.81 kPa), the second half of the plants were left under non-stressed conditions (20 °C, 0.58 kPa). Atomic absorption spectrometry was used to determine Cd content in needles, while gas and liquid chromatography was used to determine changes in primary and secondary metabolites. Photosynthesis-related processes were explored with gas-exchange and chlorophyll fluorescence systems. Our work supports the hypothesis that atmospheric CdO NPs penetrate into leaves but high temperature and VPD reduce such penetration due to stomatal closure. The hypothesis that atmospheric CdO NPs influences physiological and metabolic processes in plants was also confirmed. This impact strengthens with increasing time of exposure. Finally, we found evidence that plants acclimated to stress conditions have different sensitivity to CdO NPs compared to plants not so acclimated. These findings have important consequences for understanding impacts of global warming on plants and indicates that although the effects of elevated temperatures can be deleterious, this may limit other forms of plant stress associated with air pollution.
- MeSH
- aklimatizace fyziologie MeSH
- borovice MeSH
- fotosyntéza fyziologie MeSH
- globální oteplování MeSH
- jedle MeSH
- látky znečišťující vzduch toxicita MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- listy rostlin účinky léků MeSH
- nanočástice toxicita MeSH
- oxidy toxicita MeSH
- semenáček účinky léků MeSH
- sloučeniny kadmia toxicita MeSH
- smrk účinky léků fyziologie MeSH
- teplota * MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
Lead nanoparticles (NPs) are released into air from metal processing, road transport or combustion processes. Inhalation exposure is therefore very likely to occur. However, even though the effects of bulk lead are well known, there is limited knowledge regarding impact of Pb NPs inhalation. This study focused on acute and subchronic exposures to lead oxide nanoparticles (PbO NPs). Mice were exposed to PbO NPs in whole body inhalation chambers for 4-72 h in acute experiment (4.05 × 106 PbO NPs/cm3), and for 1-11 weeks in subchronic experiment (3.83 × 105 particles/cm3 in lower and 1.93 × 106 particles/cm3 in higher exposure group). Presence of NPs was confirmed in all studied organs, including brain, which is very important considering lead neurotoxicity. Lead concentration gradually increased in all tissues depending on the exposure concentration and duration. The most burdened organs were lung and kidney, however liver and brain also showed significant increase of lead concentration during exposure. Histological analysis documented numerous morphological alterations and tissue damage, mainly in lung, but also in liver. Mild pathological changes were observed also in kidney and brain. Levels of glutathione (reduced and oxidized) were modulated mainly in lung in both, acute and subchronic exposures. Increase of lipid peroxidation was observed in kidney after acute exposure. This study characterized impacts of short to longer-term inhalation exposure, proved transport of PbO NPs to secondary organs, documented time and concentration dependent gradual increase of Pb concentration and histopathological damage in tissues.
- MeSH
- aplikace inhalační MeSH
- glutathion metabolismus MeSH
- inhalační expozice škodlivé účinky MeSH
- játra účinky léků MeSH
- ledviny účinky léků MeSH
- mozek účinky léků MeSH
- myši MeSH
- nanočástice aplikace a dávkování chemie toxicita MeSH
- olovo aplikace a dávkování chemie farmakokinetika toxicita MeSH
- oxidy aplikace a dávkování chemie farmakokinetika toxicita MeSH
- peroxidace lipidů účinky léků MeSH
- plíce účinky léků MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Lead is well known environmental pollutant, which can cause toxic effects in multiple organ systems. However, the influence of lead oxide nanoparticles, frequently emitted to the environment by high temperature technological processes, is still concealed. Therefore, we investigate lead oxide nanoparticle distribution through the body upon their entry into lungs and determine the microscopic and ultramicroscopic changes caused by the nanoparticles in primary and secondary target organs. METHODS: Adult female mice (ICR strain) were continuously exposed to lead oxide nanoparticles (PbO-NPs) with an average concentration approximately 106 particles/cm3 for 6 weeks (24 h/day, 7 days/week). At the end of the exposure period, lung, brain, liver, kidney, spleen, and blood were collected for chemical, histological, immunohistochemical and electron microscopic analyses. RESULTS: Lead content was found to be the highest in the kidney and lungs, followed by the liver and spleen; the smallest content of lead was found in brain. Nanoparticles were located in all analysed tissues and their highest number was found in the lung and liver. Kidney, spleen and brain contained lower number of nanoparticles, being about the same in all three organs. Lungs of animals exposed to lead oxide nanoparticles exhibited hyperaemia, small areas of atelectasis, alveolar emphysema, focal acute catarrhal bronchiolitis and also haemostasis with presence of siderophages in some animals. Nanoparticles were located in phagosomes or formed clusters within cytoplasmic vesicles. In the liver, lead oxide nanoparticle exposure caused hepatic remodeling with enlargement and hydropic degeneration of hepatocytes, centrilobular hypertrophy of hepatocytes with karyomegaly, areas of hepatic necrosis, occasional periportal inflammation, and extensive accumulation of lipid droplets. Nanoparticles were accumulated within mitochondria and peroxisomes forming aggregates enveloped by an electron-dense mitochondrial matrix. Only in some kidney samples, we observed areas of inflammatory infiltrates around renal corpuscles, tubules or vessels in the cortex. Lead oxide nanoparticles were dispersed in the cytoplasm, but not within cell organelles. There were no significant morphological changes in the spleen as a secondary target organ. Thus, pathological changes correlated with the amount of nanoparticles found in cells rather than with the concentration of lead in a given organ. CONCLUSIONS: Sub-chronic exposure to lead oxide nanoparticles has profound negative effects at both cellular and tissue levels. Notably, the fate and arrangement of lead oxide nanoparticles were dependent on the type of organs.
- MeSH
- hodnocení rizik MeSH
- inhalační expozice MeSH
- játra účinky léků metabolismus ultrastruktura MeSH
- kovové nanočástice * aplikace a dávkování chemie toxicita MeSH
- látky znečišťující životní prostředí aplikace a dávkování chemie farmakokinetika toxicita MeSH
- ledviny účinky léků metabolismus ultrastruktura MeSH
- mozek účinky léků metabolismus ultrastruktura MeSH
- myši inbrední ICR MeSH
- olovo aplikace a dávkování chemie farmakokinetika toxicita MeSH
- oxidy aplikace a dávkování chemie farmakokinetika toxicita MeSH
- plíce účinky léků metabolismus ultrastruktura MeSH
- slezina účinky léků metabolismus ultrastruktura MeSH
- tkáňová distribuce MeSH
- toxikokinetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Cadmium nanoparticles can represent a risk in both industrial and environmental settings, but there is little knowledge on the impacts of their inhalation, especially concerning longer-term exposures. In this study, mice were exposed to cadmium oxide (CdO) nanoparticles in whole body inhalation chambers for 4 to 72 h in acute and 1 to 13 weeks (24 h/day, 7 days/week) in chronic exposure to investigate the dynamics of nanoparticle uptake and effects. In the acute experiment, mice were exposed to 2.95 × 10(6) particles/cm(3) (31.7 μg CdO/m(3)). The same concentration and a lower one (1.18 × 10(6) particles/cm(3), 12.7 μg CdO/m(3)) were used for the chronic exposure. Transmission electron microscopy documented distribution of nanoparticles into all studied organs. Major portion of nanoparticles was retained in the lung, but longer exposure led to a greater relative redistribution into secondary organs, namely the kidney, and also the liver and spleen. Accumulation of Cd in the lung and liver occurred already after 24 h and in the brain, kidney, and spleen after 72 h of exposure, and a further increase of Cd levels was observed throughout the chronic exposure. There were significant differences in both Cd accumulation and effects between the two exposure doses. Lung weight in the higher exposure group increased up to 2-fold compared to the control. Histological analyses showed dose-dependent alterations in lung and liver morphology and damage to their tissue. Modulation of oxidative stress parameters including glutathione levels and increased lipid peroxidation occurred mainly after the greater chronic exposure. The results emphasize risk of longer-term inhalation of cadmium nanoparticles, since adverse effects occurring after shorter exposures gradually progressed with a longer exposure duration.
- MeSH
- glutathion metabolismus MeSH
- inhalační expozice škodlivé účinky MeSH
- játra účinky léků metabolismus patologie MeSH
- ledviny účinky léků metabolismus patologie MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice toxicita MeSH
- oxidační stres MeSH
- oxidy toxicita MeSH
- peroxidace lipidů MeSH
- plíce účinky léků metabolismus patologie MeSH
- sloučeniny kadmia toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The environmental fate of airborne nanoparticles and their toxicity to plants is not yet fully understood. Pot-grown barley plants with second leaves developed were therefore exposed to CdO nanoparticles (CdONPs) of ecologically relevant size (7-60 nm) and concentration (2.03 ± 0.45 × 10(5) particles cm(-3)) in air for 3 weeks. An experiment was designed to test the effects of different treatments when only leaves (T1); leaves and soil substrate (T2); and leaves, soil, and water supply were exposed to nanoparticles (T3). A fourth, control group of plants was left without treatment (T0). Although CdONPs were directly absorbed by leaves from the air, a part of leaf-allocated Cd was also transported from roots by transpiration flow. Chromatographic assays revealed that CdONPs had a significant effect on total content of primary metabolites (amino acids and saccharides) but no significant effect on total content of secondary metabolites (phenolic compounds, Krebs cycle acids, and fatty acids). In addition, the compositions of individual metabolite classes were affected by CdONP treatment. For example, tryptophan and phenylalanine were the most affected amino acids in both analysed organs, while ferulic acid and isovitexin constituted the polyphenols most affected in leaves. Even though CdONP treatment had no effect on total fatty acids content, there were significant changes in the composition of saturated and unsaturated fatty acids in both the roots and leaves of treated plants. Although the results indicate the most pronounced effect in T3 plants as compared to T1 and T2 plants, even just leaf exposure to CdONPs has the potential to induce changes in plant metabolism.
- MeSH
- aminokyseliny metabolismus MeSH
- apigenin metabolismus MeSH
- fenoly metabolismus MeSH
- ječmen (rod) účinky léků metabolismus MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- kyseliny kumarové metabolismus MeSH
- látky znečišťující půdu toxicita MeSH
- látky znečišťující vodu toxicita MeSH
- listy rostlin účinky léků metabolismus MeSH
- nanočástice toxicita MeSH
- oxidy toxicita MeSH
- sekundární metabolismus účinky léků MeSH
- sloučeniny kadmia toxicita MeSH
- Publikační typ
- časopisecké články MeSH
Silicate paints containing photocatalytically active TiO2 and ZnO nanoparticles were formulated. The photocatalytic efficiency of coatings was evaluated as a change in absorbance of Orange II solutions. The agar plate method was used for evaluation of antimicrobial properties of coatings. The effectiveness of the coatings was demonstrated using Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus bacteria and Aspergillus niger and Penicillium chrysogenum fungi. A slightly better photocatalytic effect was found in the coatings containing TiO2 nanoparticles than in those with ZnO. The antimicrobial activity of coatings containing nano-TiO2 was negligible. The silicate coatings containing 7.5 vol.% of ZnO nanoparticles showed an excellent antimicrobial activity against all tested bacteria and fungi Aspergillus niger; they partly inhibited also the Penicillium chrysogenum growth. Statistically significant differences between the control coatings and those with ZnO nanoparticles were found using the Rank-sum test.
- MeSH
- antiinfekční látky toxicita MeSH
- Bacteria růst a vývoj účinky léků MeSH
- financování organizované MeSH
- houby růst a vývoj účinky léků MeSH
- klinické laboratorní techniky trendy využití MeSH
- nanočástice mikrobiologie toxicita využití MeSH
- nátěrové hmoty toxicita využití MeSH
- oxid zinečnatý chemie toxicita MeSH
- oxidy chemie toxicita MeSH
- protézy a implantáty mikrobiologie využití MeSH
- silikáty chemie toxicita MeSH
- statistika jako téma MeSH
- titan chemie toxicita MeSH
- ultrafialové záření MeSH
- zdravotnické prostředky mikrobiologie MeSH
Concise international chemical assessment document, ISSN 1020-6167 37
iv, 26 s. : il. ; 30 cm
- MeSH
- chemická bezpečnost MeSH
- hodnocení rizik MeSH
- mezinárodní spolupráce MeSH
- oxidy toxicita MeSH
- pracovní expozice MeSH
- sloučeniny chloru toxicita MeSH
- Konspekt
- Chemie. Mineralogické vědy
- NLK Obory
- chemie, klinická chemie
- environmentální vědy
- pracovní lékařství
- NLK Publikační typ
- publikace WHO