Targeting Casein Kinase 1 (CK1) in Hematological Cancers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GX19-28347X
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_025/0007381
Ministry of Education, Youth and Sports of the CR
PubMed
33261128
PubMed Central
PMC7730698
DOI
10.3390/ijms21239026
PII: ijms21239026
Knihovny.cz E-zdroje
- Klíčová slova
- AML, CK1α, CK1ε, CLL, MM, WNT pathway, casein kinase 1, inhibitors, leukemia, umbralisib,
- MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- cílená molekulární terapie * MeSH
- hematologické nádory farmakoterapie enzymologie patologie MeSH
- kasein kinasa I antagonisté a inhibitory chemie metabolismus MeSH
- lidé MeSH
- nádorové kmenové buňky účinky léků metabolismus patologie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- kasein kinasa I MeSH
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.
Zobrazit více v PubMed
Lemeer S., Heck A.J. The phosphoproteomics data explosion. Curr. Opin. Chem. Biol. 2009;13:414–420. doi: 10.1016/j.cbpa.2009.06.022. PubMed DOI
Sikes R.A. Chemistry and pharmacology of anticancer drugs. Br. J. Cancer. 2007;97:1713. doi: 10.1038/sj.bjc.6604075. DOI
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res. 2020;152:104609. doi: 10.1016/j.phrs.2019.104609. PubMed DOI
Knippschild U., Krüger M., Richter J., Xu P., García-Reyes B., Peifer C., Halekotte J., Bakulev V., Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front. Oncol. 2014;4:96. doi: 10.3389/fonc.2014.00096. PubMed DOI PMC
Cegielska A., Gietzen K.F., Rivers A., Virshup D.M. Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J. Biol Chem. 1998;273:1357–1364. doi: 10.1074/jbc.273.3.1357. PubMed DOI
Fish K.J., Cegielska A., Getman M.E., Landes G.M., Virshup D.M. Isolation and Characterization of Human Casein Kinase I-Epsilon (Cki), a Novel Member of the Cki Gene Family. J. Biol. Chem. 1995;270:14875–14883. doi: 10.1074/jbc.270.25.14875. PubMed DOI
Petzold G., Fischer E.S., Thomä N.H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4 CRBN ubiquitin ligase. Nature. 2016;532:127–130. doi: 10.1038/nature16979. PubMed DOI
Minzel W., Venkatachalam A., Fink A., Hung E., Brachya G., Burstain I., Shaham M., Rivlin A., Omer I., Zinger A., et al. Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models. Cell. 2018 doi: 10.1016/j.cell.2018.07.045. PubMed DOI PMC
Long A., Zhao H., Huang X. Structural Basis for the Interaction between Casein Kinase 1 Delta and a Potent and Selective Inhibitor. J. Med. Chem. 2012;55:956–960. doi: 10.1021/jm201387s. PubMed DOI
Long A.M., Zhao H., Huang X. Structural basis for the potent and selective inhibition of casein kinase 1 epsilon. J. Med. Chem. 2012;55:10307–10311. doi: 10.1021/jm301336n. PubMed DOI
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Schittek B., Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol. Cancer. 2014;13:231. doi: 10.1186/1476-4598-13-231. PubMed DOI PMC
Xu P., Ianes C., Gärtner F., Liu C., Burster T., Bakulev V., Rachidi N., Knippschild U., Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D) Gene. 2019;715:144005. doi: 10.1016/j.gene.2019.144005. PubMed DOI PMC
Jiang S., Zhang M., Sun J., Yang X. Casein kinase 1α: Biological mechanisms and theranostic potential. Cell Commun. Signal. 2018;16:1–24. doi: 10.1186/s12964-018-0236-z. PubMed DOI PMC
Perez D.I., Gil C., Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med. Res. Rev. 2011;31:924–954. doi: 10.1002/med.20207. PubMed DOI
Bernatik O., Ganji R.S., Dijksterhuis J.P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., Bryja V. Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. J. Biol. Chem. 2011;286:10396–10410. doi: 10.1074/jbc.M110.169870. PubMed DOI PMC
Bryja V., Schulte G., Rawal N., Grahn A., Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J. Cell Sci. 2007;120:586–595. doi: 10.1242/jcs.03368. PubMed DOI
Greer Y.E., Rubin J.S. Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a-dependent neurite outgrowth. J. Cell Biol. 2011;192:993–1004. doi: 10.1083/jcb.201011111. PubMed DOI PMC
Peters J.M., McKay R.M., McKay J.P., Graff J.M. Casein kinase I transduces Wnt signals. Nature. 1999;401:345–350. doi: 10.1038/43830. PubMed DOI
Vinyoles M., Del Valle-Pérez B., Curto J., Padilla M., Villarroel A., Yang J., de Herreros A.G., Duñach M. Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling. Oncogene. 2017;36:429–438. doi: 10.1038/onc.2016.209. PubMed DOI PMC
Zeng C.M., Chen Z., Fu L. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers. Int J. Mol. Sci. 2018;19:1543. doi: 10.3390/ijms19051543. PubMed DOI PMC
Dijksterhuis J.P., Baljinnyam B., Stanger K., Sercan H.O., Ji Y., Andres O., Rubin J.S., Hannoush R.N., Schulte G. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem. 2015;290:6789–6798. doi: 10.1074/jbc.M114.612648. PubMed DOI PMC
Suraweera N., Robinson J., Volikos E., Guenther T., Talbot I., Tomlinson I., Silver A. Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines. Int. J. Cancer. 2006;119:1837–1842. doi: 10.1002/ijc.22046. PubMed DOI
Fodde R. The APC gene in colorectal cancer. Eur. J. Cancer. 2002;38:867–871. doi: 10.1016/S0959-8049(02)00040-0. PubMed DOI
Kim S., Jeong S. Mutation hotspots in the β-catenin gene: Lessons from the human cancer genome databases. Mol. Cells. 2019 doi: 10.14348/molcells.2018.0436. PubMed DOI PMC
Anvarian Z., Nojima H., van Kappel E.C., Madl T., Spit M., Viertler M., Jordens I., Low T.Y., van Scherpenzeel R.C., Kuper I., et al. Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nat. Struct. Mol. Biol. 2016 doi: 10.1038/nsmb.3191. PubMed DOI
Foldynova-Trantirkova S., Sekyrova P., Tmejova K., Brumovska E., Bernatik O., Blankenfeldt W., Krejci P., Kozubik A., Dolezal T., Trantirek L., et al. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res. 2010;12:R30. doi: 10.1186/bcr2581. PubMed DOI PMC
Kaucka M., Plevova K., Pavlova S., Janovska P., Mishra A., Verner J., Prochazkova J., Krejci P., Kotaskova J., Ovesna P., et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of b-lymphocyte migration. Cancer Res. 2013;73:1491–1501. doi: 10.1158/0008-5472.CAN-12-1752. PubMed DOI
Baskar S., Kwong K.Y., Hofer T., Levy J.M., Kennedy M.G., Lee E., Staudt L.M., Wilson W.H., Wiestner A., Rader C. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 2008;14:396–404. doi: 10.1158/1078-0432.CCR-07-1823. PubMed DOI
Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., Skabrahova H., Radaszkiewicz T., Ovesna P., Vondalova Blanarova O., et al. Casein Kinase 1 is a Therapeutic Target in Chronic Lymphocytic Leukemia. Blood. 2018 doi: 10.1182/blood-2017-05-786947. PubMed DOI
Wang L., Shalek A.K., Lawrence M., Ding R., Gaublomme J.T., Pochet N., Stojanov P., Sougnez C., Shukla S.A., Stevenson K.E., et al. Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood. 2014;124 doi: 10.1182/blood-2014-01-552067. PubMed DOI PMC
Khan A.S., Hojjat-Farsangi M., Daneshmanesh A.H., Hansson L., Kokhaei P., Österborg A., Mellstedt H., Moshfegh A. Dishevelled proteins are significantly upregulated in chronic lymphocytic leukaemia. Tumour Biol. 2016 doi: 10.1007/s13277-016-5039-5. PubMed DOI
Cong F., Schweizer L., Varmus H. Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol. Cell Biol. 2004;24:2000–2011. doi: 10.1128/MCB.24.5.2000-2011.2004. PubMed DOI PMC
Gao Z.H., Seeling J.M., Hill V., Yochum A., Virshup D.M. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc. Natl. Acad. Sci. USA. 2002;99:1182–1187. doi: 10.1073/pnas.032468199. PubMed DOI PMC
Polakis P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 2007;17:45–51. doi: 10.1016/j.gde.2006.12.007. PubMed DOI
Okamura H., Garcia-Rodriguez C., Martinson H., Qin J., Virshup D.M., Rao A. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell Biol. 2004;24:4184–4195. doi: 10.1128/MCB.24.10.4184-4195.2004. PubMed DOI PMC
Utz A.C., Hirner H., Blatz A., Hillenbrand A., Schmidt B., Deppert W., Henne-Bruns D., Fischer D., Thal D.R., Leithäuser F., et al. Analysis of cell type-specific expression of CK1 epsilon in various tissues of young adult BALB/c Mice and in mammary tumors of SV40 T-Ag-transgenic mice. J. Histochem. Cytochem. 2010;58:1–15. doi: 10.1369/jhc.2009.954628. PubMed DOI PMC
Grainger S., Traver D., Willert K. Wnt Signaling in Hematological Malignancies. Prog. Mol. Biol. Transl. Sci. 2018;153:321–341. doi: 10.1016/bs.pmbts.2017.11.002. PubMed DOI PMC
Staal F.J.T., Chhatta A., Mikkers H. Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis. Exp. Hematol. 2016;44:451–457. doi: 10.1016/j.exphem.2016.03.004. PubMed DOI
Janovská P., Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br. J. Pharmacol. 2017;174:4701–4715. doi: 10.1111/bph.13949. PubMed DOI PMC
Cozza G., Pinna L.A. Casein kinases as potential therapeutic targets. Expert Opin. Ther. Targets. 2015;20:319–340. doi: 10.1517/14728222.2016.1091883. PubMed DOI
Cunningham P.S., Ahern S.A., Smith L.C., da Silva Santos C.S., Wager T.T., Bechtold D.A. Targeting of the circadian clock via CK1δ/ϵ to improve glucose homeostasis in obesity. Sci. Rep. 2016 doi: 10.1038/srep29983. PubMed DOI PMC
Arey R., McClung C.A. An inhibitor of casein kinase 1 ε/δ partially normalizes the manic-like behaviors of the ClockΔ19 mouse. Behav. Pharmacol. 2012;23:392–396. doi: 10.1097/FBP.0b013e32835651fd. PubMed DOI PMC
Perreau-Lenz S., Vengeliene V., Noori H.R., Merlo-Pich E.V., Corsi M.A., Corti C., Spanagel R. Inhibition of the casein-kinase-1-ε/δ/prevents relapse-like alcohol drinking. Neuropsychopharmacology. 2012;37:2121–2131. doi: 10.1038/npp.2012.62. PubMed DOI PMC
Wager T.T., Chandrasekaran R.Y., Bradley J., Rubitski D., Berke H., Mente S., Butler T., Doran A., Chang C., Fisher K., et al. Casein kinase 1δ/ε inhibitor PF-5006739 attenuates opioid drug-seeking behavior. ACS Chem. Neurosci. 2014 doi: 10.1021/cn500201x. PubMed DOI
Rosenberg L.H., Lafitte M., Quereda V., Grant W., Chen W., Bibian M., Noguchi Y., Fallahi M., Yang C., Chang J.C., et al. Therapeutic targeting of casein kinase 1δ in breast cancer. Sci. Transl. Med. 2015;7:318ra202. doi: 10.1126/scitranslmed.aac8773. PubMed DOI PMC
Liu C., Witt L., Ianes C., Bischof J., Bammert M.T., Baier J., Kirschner S., Henne-Bruns D., Xu P., Kornmann M., et al. Newly developed CK1-specific inhibitors show specifically stronger effects on ck1 mutants and colon cancer cell lines. Int. J. Mol. Sci. 2019;20:6184. doi: 10.3390/ijms20246184. PubMed DOI PMC
Rena G., Bain J., Elliott M., Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004;5:60–65. doi: 10.1038/sj.embor.7400048. PubMed DOI PMC
Mashhoon N., DeMaggio A.J., Tereshko V., Bergmeier S.C., Egli M., Hoekstra M.F., Kuret J. Crystal structure of a conformation-selective casein kinase-1 inhibitor. J. Biol. Chem. 2000 doi: 10.1074/jbc.M001713200. PubMed DOI
Brockschmidt C., Hirner H., Huber N., Eismann T., Hillenbrand A., Giamas G., Radunsky B., Ammerpohl O., Bohm B., Henne-Bruns D., et al. Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut. 2008;57:799–806. doi: 10.1136/gut.2007.123695. PubMed DOI
Toyoshima M., Howie H.L., Imakura M., Walsh R.M., Annis J.E., Chang A.N., Frazier J., Chau B.N., Loboda A., Linsley P.S., et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc. Natl. Acad. Sci. USA. 2012;109:9545–9550. doi: 10.1073/pnas.1121119109. PubMed DOI PMC
Cheong J.K., Nguyen T.H., Wang H., Tan P., Voorhoeve P.M., Lee S.H., Virshup D.M. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/varepsilon and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene. 2011;30:2558–2569. doi: 10.1038/onc.2010.627. PubMed DOI PMC
Anastassiadis T., Deacon S.W., Devarajan K., Ma H., Peterson J.R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 2011 doi: 10.1038/nbt.2017. PubMed DOI PMC
Walton K.M., Fisher K., Rubitski D., Marconi M., Meng Q.-J., Adams J., Bass M., Chandrasekaran R., Butler T., Griffor M., et al. Selective Inhibition of Casein Kinase 1ε Minimally Alters Circadian Clock Period. J. Pharmacol. Exp. Ther. 2009;330:430–439. doi: 10.1124/jpet.109.151415. PubMed DOI
Meng Q.-J., Maywood E.S., Bechtold D.A., Lu W.-Q., Li J., Gibbs J.E., Dupré S.M., Chesham J.E., Rajamohan F., Knafels J., et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. USA. 2010;107:15240–15245. doi: 10.1073/pnas.1005101107. PubMed DOI PMC
Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K., Holland J., Kleiman R., Nelson F., Reynolds L., et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 2007;322:730–738. doi: 10.1124/jpet.107.122846. PubMed DOI
Deng C., Lipstein M.R., Scotto L., Jirau Serrano X.O., Mangone M.A., Li S., Vendome J., Hao Y., Xu X., Deng S.X., et al. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kdelta and CK1epsilon in hematological malignancies. Blood. 2017;129:88–99. doi: 10.1182/blood-2016-08-731240. PubMed DOI PMC
Huang H., Acquaviva L., Berry V., Bregman H., Chakka N., O’Connor A., Dimauro E.F., Dovey J., Epstein O., Grubinska B., et al. Structure-based design of potent and selective CK1γ inhibitors. ACS Med. Chem. Lett. 2012 doi: 10.1021/ml300278f. PubMed DOI PMC
Zhang T., Davidson-Moncada J.K., Mukherjee P., Furman R.R., Bhavsar E., Chen Z., Hakimpour P., Papavasiliou N., Tam W. MicroRNA-155 regulates casein kinase 1 gamma 2: A potential pathogenetic role in chronic lymphocytic leukemia. Blood Cancer J. 2017 doi: 10.1038/bcj.2017.80. PubMed DOI PMC
Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019;94:1266–1287. doi: 10.1002/ajh.25595. PubMed DOI
Sant M., Allemani C., Tereanu C., De Angelis R., Capocaccia R., Visser O., Marcos-Gragera R., Maynadié M., Simonetti A., Lutz J.-M., et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood. 2010;116:3724–3734. doi: 10.1182/blood-2010-05-282632. PubMed DOI
Janovska P., Poppova L., Plevova K., Plesingerova H., Behal M., Kaucka M., Ovesna P., Hlozkova M., Borsky M., Stehlikova O., et al. Autocrine signaling by Wnt-5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin. Cancer Res. 2016;22:459–469. doi: 10.1158/1078-0432.CCR-15-0154. PubMed DOI PMC
Plešingerová H., Janovská P., Mishra A., Smyčková L., Poppová L., Libra A., Plevová K., Ovesná P., Radová L., Doubek M., et al. Expression of COBLL1 encoding novel ROR1 binding partner is robust predictor of survival in chronic lymphocytic leukemia. Haematologica. 2018;103:313–324. doi: 10.3324/haematol.2017.178699. PubMed DOI PMC
Daneshmanesh A.H., Mikaelsson E., Jeddi-Tehrani M., Bayat A.A., Ghods R., Ostadkarampour M., Akhondi M., Lagercrantz S., Larsson C., Osterborg A., et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int. J. Cancer. 2008;123:1190–1195. doi: 10.1002/ijc.23587. PubMed DOI
Fukuda T., Chen L., Endo T., Tang L., Lu D., Castro J.E., Widhopf G.F., Rassenti L.Z., Cantwell M.J., Prussak C.E., et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc. Natl. Acad. Sci. USA. 2008;105:3047–3052. doi: 10.1073/pnas.0712148105. PubMed DOI PMC
Daneshmanesh A.H., Porwit A., Hojjat-Farsangi M., Jeddi-Tehrani M., Tamm K.P., Grandér D., Lehmann S., Norin S., Shokri F., Rabbani H., et al. Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk. Lymphoma. 2013;8194:843–850. doi: 10.3109/10428194.2012.731599. PubMed DOI
Karvonen H., Chiron D., Niininen W., Ek S., Jerkeman M., Moradi E., Nykter M., Heckman C.A., Kallioniemi O., Murumägi A., et al. Crosstalk between ROR1 and BCR pathways defines novel treatment strategies in mantle cell lymphoma. Blood Adv. 2017;1:2257–2268. doi: 10.1182/bloodadvances.2017010215. PubMed DOI PMC
Campo E., Raffeld M., Jaffe E.S. Mantle-cell lymphoma. Semin. Hematol. 1999;36:115–127. PubMed
Choi M.Y., Widhopf G.F., Wu C.C.N., Cui B., Lao F., Sadarangani A., Cavagnaro J., Prussak C., Carson D.A., Jamieson C., et al. Pre-clinical Specificity and Safety of UC-961, a First-In-Class Monoclonal Antibody Targeting ROR1. Clin. Lymphoma Myeloma Leuk. 2015;15:S167–S169. doi: 10.1016/j.clml.2015.02.010. PubMed DOI PMC
Berger C., Sommermeyer D., Hudecek M., Berger M., Balakrishnan A., Paszkiewicz P.J., Kosasih P.L., Rader C., Riddell S.R. Safety of Targeting ROR1 in Primates with Chimeric Antigen Receptor-Modified T Cells. Cancer Immunol. Res. 2015;3:206–216. doi: 10.1158/2326-6066.CIR-14-0163. PubMed DOI PMC
Liu X., Pu W., He H., Fan X., Zheng Y., Zhou J.K., Ma R., He J., Zheng Y., Wu K., et al. Novel ROR1 inhibitor ARI-1 suppresses the development of non-small cell lung cancer. Cancer Lett. 2019 doi: 10.1016/j.canlet.2019.05.016. PubMed DOI
Fultang N., Illendula A., Chen B., Wu C., Jonnalagadda S., Baird N., Klase Z., Peethambaran B. Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3ß activity. PLoS ONE. :2019. doi: 10.1371/journal.pone.0217789. PubMed DOI PMC
Daneshmanesh A.H., Hojjat-Farsangi M., Ghaderi A., Moshfegh A., Hansson L., Schultz J., Vågberg J., Byström S., Olsson E., Olin T., et al. A receptor tyrosine kinase ROR1 inhibitor (KAN0439834) induced significant apoptosis of pancreatic cells which was enhanced by erlotinib and ibrutinib. PLoS ONE. 2018 doi: 10.1371/journal.pone.0198038. PubMed DOI PMC
Mellstedt H., Ghaderi A., Aschan J., Mozaffari F., Moshfegh A., Sander B., Schultz J., Norin M., Olin T., Drakos E., et al. ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells. Blood. 2019 doi: 10.1182/blood-2019-129773. PubMed DOI PMC
Karvonen H., Perttilä R., Niininen W., Barker H., Ungureanu D. Targeting Wnt signaling pseudokinases in hematological cancers. Eur. J. Haematol. 2018 doi: 10.1111/ejh.13137. PubMed DOI
Zhang S., Chen L., Cui B., Chuang H.-Y., Yu J., Wang-Rodriguez J., Tang L., Chen G., Basak G.W., Kipps T.J. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS ONE. 2012;7:e31127. doi: 10.1371/journal.pone.0031127. PubMed DOI PMC
Modak C., Bryant P. Casein Kinase I epsilon positively regulates the Akt pathway in breast cancer cell lines. Biochem. Biophys. Res. Commun. 2008;368:801–807. doi: 10.1016/j.bbrc.2008.02.001. PubMed DOI PMC
Kani S., Oishi I., Yamamoto H., Yoda A., Suzuki H., Nomachi A., Iozumi K., Nishita M., Kikuchi A., Takumi T., et al. The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J. Biol. Chem. 2004 doi: 10.1074/jbc.M409039200. PubMed DOI
Kim J., Kim D.W., Chang W., Choe J., Kim J., Park C.-S., Song K., Lee I. Wnt5a is secreted by follicular dendritic cells to protect germinal center B cells via Wnt/Ca2+/NFAT/NF-κB-B cell lymphoma 6 signaling. J. Immunol. 2012;188:182–189. doi: 10.4049/jimmunol.1102297. PubMed DOI
Yu J., Chen L., Cui B., Widhopf G.F., II, Shen Z., Wu R., Zhang L., Zhang S., Briggs S.P., Kipps T.J. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J. Clin. Investig. 2016;126:585–598. doi: 10.1172/JCI83535. PubMed DOI PMC
Hasan M.K., Yu J., Chen L., Cui B., Widhopf Ii G.F., Rassenti L., Shen Z., Briggs S.P., Kipps T.J. Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia. 2017;31:2615–2622. doi: 10.1038/leu.2017.133. PubMed DOI PMC
Hasan M.K., Yu J., Widhopf G.F., II, Rassenti L.Z., Chen L., Shen Z., Briggs S.P., Neuberg D.S., Kipps T.J. Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia. Blood. 2018;132:170–178. doi: 10.1182/blood-2017-12-819383. PubMed DOI PMC
Yu J., Chen L., Chen Y., Hasan M.K., Ghia E.M., Zhang L., Wu R., Rassenti L.Z., Widhopf G.F., Shen Z., et al. Wnt5a induces ROR1 to associate with 14-3-3ζ for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells. Leukemia. 2017;31:2608–2614. doi: 10.1038/leu.2017.132. PubMed DOI PMC
Zhang Q., Wang H.Y., Liu X., Nunez-Cruz S., Jillab M., Melnikov O., Nath K., Glickson J., Wasik M.A. Cutting Edge: ROR1/CD19 Receptor Complex Promotes Growth of Mantle Cell Lymphoma Cells Independently of the B Cell Receptor–BTK Signaling Pathway. J. Immunol. 2019;203:2043–2048. doi: 10.4049/jimmunol.1801327. PubMed DOI PMC
Hasan M.K., Rassenti L., Widhopf G.F., Yu J., Kipps T.J. Wnt5a causes ROR1 to complex and activate cortactin to enhance migration of chronic lymphocytic leukemia cells. Leukemia. 2019 doi: 10.1038/s41375-018-0306-7. PubMed DOI PMC
Rudelius M., Pittaluga S., Nishizuka S., Pham T.H., Fend F., Jaffe E.S., Quintanilla-Martinez L., Raffeld M. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006;108:1668–1676. doi: 10.1182/blood-2006-04-015586. PubMed DOI PMC
Linke F., Zaunig S., Nietert M.M., VonBonin F., Lutz S., Dullin C., Janovská P., Beissbarth T., Alves F., Klapper W., et al. WNT5A: A motility-promoting factor in Hodgkin lymphoma. Oncogene. 2017;36:13–23. doi: 10.1038/onc.2016.183. PubMed DOI
Cui B., Chen L., Rassenti L.Z., Ghia E.M., Yu J., Zhang L., Neuberg D.S., Wierda W., Keating M., Rai K., et al. High-level expression of ROR1 associates with early disease progression in patients with chronic lymphocytic leukemia. Blood. 2015;126:1713. doi: 10.1182/blood.V126.23.1713.1713. DOI
Widhopf 2nd G.F., Cui B., Ghia E.M., Chen L., Messer K., Shen Z., Briggs S.P., Croce C.M., Kipps T.J. ROR1 can interact with TCL1 and enhance leukemogenesis in Emu-TCL1 transgenic mice. Proc. Natl. Acad. Sci. USA. 2014;111:793–798. doi: 10.1073/pnas.1308374111. PubMed DOI PMC
Wu Q.-L. Dysregulation of Frizzled 6 is a critical component of Bcell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood. 2009 doi: 10.1182/blood. PubMed DOI PMC
Kaucká M., Petersen J., Janovská P., Radaszkiewicz T., Smyčková L., Daulat A.M., Borg J.P., Schulte G., Bryja V. Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun. Signal. 2015;13:2. doi: 10.1186/s12964-014-0079-1. PubMed DOI PMC
Hartmann E.M., Rudelius M., Burger J.A., Rosenwald A. CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk. Lymphoma. 2016;57:563–571. doi: 10.3109/10428194.2015.1068308. PubMed DOI PMC
Burris 3rd H.A., Flinn I.W., Patel M.R., Fenske T.S., Deng C., Brander D.M., Gutierrez M., Essell J.H., Kuhn J.G., Miskin H.P., et al. Umbralisib, a novel PI3Kdelta and casein kinase-1epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: An open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018;19:486–496. doi: 10.1016/S1470-2045(18)30082-2. PubMed DOI
Lunning M., Vose J., Nastoupil L., Fowler N., Burger J.A., Wierda W.G., Schreeder M.T., Siddiqi T., Flowers C.R., Cohen J.B., et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2019;134:1811–1820. doi: 10.1182/blood.2019002118. PubMed DOI PMC
Davids M.S., Kim H.T., Nicotra A., Savell A., Francoeur K., Hellman J.M., Bazemore J., Miskin H.P., Sportelli P., Stampleman L., et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: A multicentre phase 1-1b study. Lancet Haematol. 2019;6:e38–e47. doi: 10.1016/S2352-3026(18)30196-0. PubMed DOI PMC
Maharaj K., Powers J.J., Achille A., Mediavilla-Varela M., Gamal W., Burger K.L., Fonseca R., Jiang K., Miskin H.P., Maryanski D., et al. The dual PI3Kdelta/CK1epsilon inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells. Blood Adv. 2020;4:3072–3084. doi: 10.1182/bloodadvances.2020001800. PubMed DOI PMC
Shin S., Wolgamott L., Roux P.P., Yoon S.O. Casein kinase 1epsilon promotes cell proliferation by regulating mRNA translation. Cancer Res. 2014;74:201–211. doi: 10.1158/0008-5472.CAN-13-1175. PubMed DOI
van Loosdregt J., Fleskens V., Tiemessen M.M., Mokry M., van Boxtel R., Meerding J., Pals C.E., Kurek D., Baert M.R., Delemarre E.M., et al. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity. 2013;39:298–310. doi: 10.1016/j.immuni.2013.07.019. PubMed DOI
Yu J., Chen L., Cui B., Wu C., Choi M.Y., Chen Y., Zhang L., Rassenti L.Z., Widhopf Ii G.F., Kipps T.J. Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib. Leukemia. 2017;31:1333–1339. doi: 10.1038/leu.2016.368. PubMed DOI PMC
Nastoupil L.J., Lunning M.A., Vose J.M., Schreeder M.T., Siddiqi T., Flowers C.R., Cohen J.B., Burger J.A., Wierda W.G., O’Brien S., et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: A phase 1 dose escalation and expansion trial. Lancet Haematol. 2019;6:e100–e109. doi: 10.1016/S2352-3026(18)30216-3. PubMed DOI
Hellström-Lindberg E., Tobiasson M., Greenberg P. Myelodysplastic syndromes: Moving towards personalized management. Haematologica. 2020 doi: 10.3324/haematol.2020.248955. PubMed DOI PMC
Estey E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018 doi: 10.1002/ajh.25214. PubMed DOI
Heuser M., Ofran Y., Boissel N., Brunet Mauri S., Craddock C., Janssen J., Wierzbowska A., Buske C. Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020 doi: 10.1016/j.annonc.2020.02.018. PubMed DOI
Ogawa S. Genetics of MDS. Blood. 2019 doi: 10.1182/blood-2018-10-844621. PubMed DOI PMC
Short N.J., Konopleva M., Kadia T.M., Borthakur G., Ravandi F., DiNardo C.D., Daver N. Advances in the treatment of acute myeloid leukemia: New drugs and new challenges. Cancer Discov. 2020;10:506–525. doi: 10.1158/2159-8290.CD-19-1011. PubMed DOI
Maynadié M., Girodon F., Manivet-Janoray I., Mounier M., Mugneret F., Bailly F., Favre B., Caillot D., Petrella T., Flesch M., et al. Twenty-five years of epidemiological recording on myeloid malignancies: Data from the specialized registry of hematologic malignancies of côte d’or (Burgundy, France) Haematologica. 2011 doi: 10.3324/haematol.2010.026252. PubMed DOI PMC
Schneider R.K., Ademà V., Heckl D., Järås M., Mallo M., Lord A.M., Chu L.P., McConkey M.E., Kramann R., Mullally A., et al. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell. 2014 doi: 10.1016/j.ccr.2014.08.001. PubMed DOI PMC
Krönke J., Fink E.C., Hollenbach P.W., MacBeth K.J., Hurst S.N., Udeshi N.D., Chamberlain P.P., Mani D.R., Man H.W., Gandhi A.K., et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015 doi: 10.1038/nature14610. PubMed DOI PMC
Ebert B.L. Molecular Dissection of the 5q Deletion in Myelodysplastic Syndrome. Semin. Oncol. 2011 doi: 10.1053/j.seminoncol.2011.04.010. PubMed DOI PMC
Haase D., Germing U., Schanz J., Pfeilstöcker M., Nösslinger T., Hildebrandt B., Kundgen A., Lübbert M., Kunzmann R., Giagounidis A.A.N., et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124 patients. Blood. 2007 doi: 10.1182/blood-2007-03-082404. PubMed DOI
Hasserjian R.P. Myelodysplastic Syndrome Updated. Pathobiology. 2019 doi: 10.1159/000489702. PubMed DOI
Li L., Sheng Y., Li W., Hu C., Mittal N., Tohyama K., Seba A., Zhao Y.Y., Ozer H., Zhu T., et al. β-catenin is a candidate therapeutic target for myeloid neoplasms with del(5q) Cancer Res. 2017 doi: 10.1158/0008-5472.CAN-17-0202. PubMed DOI PMC
Järås M., Miller P.G., Chu L.P., Puram R.V., Fink E.C., Schneider R.K., Al-Shahrour F., Peña P., Breyfogle L.J., Hartwell K.A., et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J. Exp. Med. 2014;211:605–612. doi: 10.1084/jem.20131033. PubMed DOI PMC
Huart A.S., MacLaine N.J., Meek D.W., Hupp T.R. CK1α plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J. Biol. Chem. 2009 doi: 10.1074/jbc.M109.052647. PubMed DOI PMC
Wei X. Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proc. Natl. Acad. Sci. USA. 2016 doi: 10.1073/pnas.1603838113. PubMed DOI PMC
Wu S., Chen L., Becker A., Schonbrunn E., Chen J. Casein Kinase 1 Regulates an MDMX Intramolecular Interaction To Stimulate p53 Binding. Mol. Cell. Biol. 2012 doi: 10.1128/MCB.00851-12. PubMed DOI PMC
Elyada E., Pribluda A., Goldstein R.E., Morgenstern Y., Brachya G., Cojocaru G., Snir-Alkalay I., Burstain I., Haffner-Krausz R., Jung S., et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature. 2011;470:409–413. doi: 10.1038/nature09673. PubMed DOI
Khalaileh A., Dreazen A., Khatib A., Apel R., Swisa A., Kidess-Bassir N., Maitra A., Meyuhas O., Dor Y., Zamir G. Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. Cancer Res. 2013 doi: 10.1158/0008-5472.CAN-12-2014. PubMed DOI
Takam Kamga P., Dal Collo G., Cassaro A., Bazzoni R., Delfino P., Adamo A., Bonato A., Carbone C., Tanasi I., Bonifacio M., et al. Small Molecule Inhibitors of Microenvironmental Wnt/β-Catenin Signaling Enhance the Chemosensitivity of Acute Myeloid Leukemia. Cancers. 2020;12:2696. doi: 10.3390/cancers12092696. PubMed DOI PMC
Wang Y., Krivtsov A.V., Sinha A.U., North T.E., Goessling W., Feng Z., Zon L.I., Armstrong S.A. The wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010 doi: 10.1126/science.1186624. PubMed DOI PMC
Yeung J., Esposito M.T., Gandillet A., Zeisig B.B., Griessinger E., Bonnet D., So C.W.E. β-Catenin Mediates the Establishment and Drug Resistance of MLL Leukemic Stem Cells. Cancer Cell. 2010 doi: 10.1016/j.ccr.2010.10.032. PubMed DOI
Miller P.G., Al-Shahrour F., Hartwell K.A., Chu L.P., Järås M., Puram R.V., Puissant A., Callahan K.P., Ashton J., McConkey M.E., et al. InVivo RNAi Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling. Cancer Cell. 2013 doi: 10.1016/j.ccr.2013.05.004. PubMed DOI PMC
Gruszka A.M., Valli D., Alcalay M. Wnt Signalling in Acute Myeloid Leukaemia. Cells. 2019;8:1403. doi: 10.3390/cells8111403. PubMed DOI PMC
Liu C., Li Y., Semenov M., Han C., Baeg G.H., Tan Y., Zhang Z., Lin X., He X. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002 doi: 10.1016/S0092-8674(02)00685-2. PubMed DOI
Kadia T.M., Jain P., Ravandi F., Garcia-Manero G., Andreef M., Takahashi K., Borthakur G., Jabbour E., Konopleva M., Daver N.G., et al. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016 doi: 10.1002/cncr.30203. PubMed DOI PMC
Lehmann S., Bykov V.J., Ali D., Andrén O., Cherif H., Tidefelt U., Uggla B., Yachnin J., Juliusson G., Moshfegh A., et al. Targeting p53 in vivo: A first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 2012 doi: 10.1200/JCO.2011.40.7783. PubMed DOI
Maslah N., Salomao N., Drevon L., Verger E., Partouche N., Ly P., Aubin P., Naoui N., Schlageter M.H., Bally C., et al. Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2020 doi: 10.3324/haematol.2019.218453. PubMed DOI PMC
Matsuoka A., Tochigi A., Kishimoto M., Nakahara T., Kondo T., Tsujioka T., Tasaka T., Tohyama Y., Tohyama K. Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia. 2010 doi: 10.1038/leu.2009.296. PubMed DOI
Chen Y., Borthakur G. Lenalidomide as a novel treatment of acute myeloid leukemia. Expert Opin. Investig. Drugs. 2013 doi: 10.1517/13543784.2013.758712. PubMed DOI
List A., Dewald G., Bennett J., Giagounidis A., Raza A., Feldman E., Powell B., Greenberg P., Thomas D., Stone R., et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 2006 doi: 10.1056/NEJMoa061292. PubMed DOI
Pellagatti A., Jädersten M., Forsblom A.M., Cattan H., Christensson B., Emanuelsson E.K., Merup M., Nilsson L., Samuelsson J., Sander B., et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc. Natl. Acad. Sci. USA. 2007 doi: 10.1073/pnas.0610477104. PubMed DOI PMC
Xie C.H., Wei M., Yang F.Y., Wu F.Z., Chen L., Wang J.K., Liu Q., Huang J.X. Efficacy and safety of lenalidomide for thtreatment of acute myeloid leukemia: A systematic review and meta-analysis. Cancer Manag. Res. 2018 doi: 10.2147/CMAR.S168610. PubMed DOI PMC
Chellappa S., Kushekhar K., Munthe L.A., Tjonnfjord G.E., Aandahl E.M., Okkenhaug K., Tasken K. The PI3K p110delta Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. J. Immunol. 2019;202:1397–1405. doi: 10.4049/jimmunol.1701703. PubMed DOI
Bibian M. Development of highly selective casein kinase 1δ/1ε (CK1δ/ε) inhibitors with potent antiproliferative properties. Bioorg. Med. Chem. Lett. 2013;23:4374–4380. doi: 10.1016/j.bmcl.2013.05.075. PubMed DOI PMC
Morgenstern Y., Das Adhikari U., Ayyash M., Elyada E., Tóth B., Moor A., Itzkovitz S., Ben-Neriah Y. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance. EMBO J. 2017;36:3046–3061. doi: 10.15252/embj.201696253. PubMed DOI PMC
Sen M., Chamorro M., Reifert J., Corr M., Carson D.A. Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 2001;44:772–781. doi: 10.1002/1529-0131(200104)44:4<772::AID-ANR133>3.0.CO;2-L. PubMed DOI
He T., Wu D., He L., Wang X., Yang B., Li S., Chen Y., Wang K., Chen R., Liu B., et al. Casein kinase 1 epsilon facilitates cartilage destruction in osteoarthritis through JNK pathway. FASEB J. 2020 doi: 10.1096/fj.201902672R. PubMed DOI
Reischl J., Schwenke S., Beekman J.M., Stürzebecher J., Mrowietz U., Heubach J.F. Increased expression of Wnt5a in psoriatic plaques. J. Investig. Dermatol. 2007;127:163–169. doi: 10.1038/sj.jid.5700488. PubMed DOI
Choi E.Y., Park H.H., Kim H., Kim H.N., Kim I., Jeon S., Kim W., Bae J.-S., Lee W. Wnt5a and Wnt11 as acute respiratory distress syndrome biomarkers for SARS-CoV-2 patients. Eur. Respir. J. 2020 doi: 10.1183/13993003.01531-2020. PubMed DOI PMC
Zyss D., Ebrahimi H., Gergely F. Casein kinase I delta controls centrosome positioning during T cell activation. J. Cell Biol. 2011;195:781–797. doi: 10.1083/jcb.201106025. PubMed DOI PMC
Hu Y., Song W., Cirstea D., Lu D., Munshi N.C., Anderson K.C. CSNK1α1 mediates malignant plasma cell survival. Leukemia. 2015;29:474–482. doi: 10.1038/leu.2014.202. PubMed DOI PMC
Manni S., Carrino M., Manzoni M., Gianesin K., Nunes S.C., Costacurta M., Tubi L.Q., Macaccaro P., Taiana E., Cabrelle A., et al. Inactivation of CK1α in multiple myeloma empowers drug cytotoxicity by affecting AKT and ß-catenin survival signaling pathways. Oncotarget. 2017 doi: 10.18632/oncotarget.14654. PubMed DOI PMC
Carrino M., Quotti Tubi L., Fregnani A., Canovas Nunes S., Barilà G., Trentin L., Zambello R., Semenzato G., Manni S., Piazza F. Prosurvival autophagy is regulated by protein kinase CK1 alpha in multiple myeloma. Cell Death Discov. 2019 doi: 10.1038/s41420-019-0179-1. PubMed DOI PMC
Cheong J.K., Zhang F., Chua P.J., Bay B.H., Thorburn A., Virshup D.M. Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers. J. Clin. Investig. 2015 doi: 10.1172/JCI78018. PubMed DOI PMC
Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2