Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28703283
PubMed Central
PMC5727250
DOI
10.1111/bph.13949
Knihovny.cz E-zdroje
- MeSH
- B-buněčný lymfom diagnóza metabolismus MeSH
- chronická lymfatická leukemie diagnóza metabolismus MeSH
- lidé MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
UNLABELLED: In this review, we discuss the intricate roles of the Wnt signalling network in the development and progression of mature B-cell-derived haematological malignancies, with a focus on chronic lymphocytic leukaemia (CLL) and related B-cell lymphomas. We review the current literature and highlight the differences between the β-catenin-dependent and -independent branches of Wnt signalling. Special attention is paid to the role of the non-canonical Wnt/planar cell polarity (PCP) pathway, mediated by the Wnt-5-receptor tyrosine kinase-like orphan receptor (ROR1)-Dishevelled signalling axis in CLL. This is mainly because the Wnt/PCP co-receptor ROR1 was found to be overexpressed in CLL and the Wnt/PCP pathway contributes to numerous aspects of CLL pathogenesis. We also discuss the possibilities of therapeutically targeting the Wnt signalling pathways as an approach to disrupt the crucial interaction between malignant cells and their micro-environment. We also advocate the need for research in this direction for other lymphomas, namely, diffuse large B-cell lymphoma, Hodgkin lymphoma, mantle cell lymphoma, Burkitt lymphoma and follicular lymphoma where the Wnt signalling pathway probably plays a similar role. LINKED ARTICLES: This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Zobrazit více v PubMed
Agostinelli C, Carloni S, Limarzi F, Righi S, Laginestra MA, Musuraca G, et al (2017). The emerging role of GSK‐3beta in the pathobiology of classical Hodgkin lymphoma. Histopathology 71: 72–80. PubMed
Alexander SPH, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE et al (2015a). The Concise Guide to PHARMACOLOGY 2015/16: G protein‐coupled receptors. Br J Pharmacol 172: 5744–5869. PubMed PMC
Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al (2015b). The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. Br J Pharmacol 172: 5979–6023. PubMed PMC
Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al (2015c). The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. Br J Pharmacol 172: 6024–6109. PubMed PMC
Arey R, McClung CA (2012). An inhibitor of casein kinase 1 epsilon/delta partially normalizes the manic‐like behaviors of the ClockDelta19 mouse. Behav Pharmacol 23: 392–396. PubMed PMC
Barna G, Mihalik R, Timar B, Tombol J, Csende Z, Sebestyen A et al (2011). ROR1 expression is not a unique marker of CLL. Hematol Oncol 29: 17–21. PubMed
Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E et al (2008). Unique cell surface expression of receptor tyrosine kinase ROR1 in human B‐cell chronic lymphocytic leukemia. Clin Cancer Res 14: 396–404. PubMed
Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al (1996). Functional interaction of beta‐catenin with the transcription factor LEF‐1. Nature 382: 638–642. PubMed
Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ et al (2015). Safety of targeting ROR1 in primates with chimeric antigen receptor‐modified T cells. Cancer Immunol Res 3: 206–216. PubMed PMC
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al (2002). Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 99: 6955–6960. PubMed PMC
Broome HE, Rassenti LZ, Wang HY, Meyer LM, Kipps TJ (2011). ROR1 is expressed on hematogones (non‐neoplastic human B‐lymphocyte precursors) and a minority of precursor‐B acute lymphoblastic leukemia. Leuk Res 35: 1390–1394. PubMed PMC
Bryja V, Bernatík O (2014). Dishevelled at the crossroads of pathways In: Wnt Signaling in Development and Disease: Molecular Mechanisms and Biological Functions (eds Hoppler S. and Moon R. T.), John Wiley & Sons, Inc, Hoboken, NJ, USA: https://doi.org/10.1002/9781118444122.ch15 DOI
Bryja V, Schulte G, Rawal N, Grahn A, Arenas E (2007). Wnt‐5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1‐dependent mechanism. J Cell Sci 120 (Pt 4): 586–595. PubMed
Burger JA, Landau DA, Taylor‐Weiner A, Bozic I, Zhang H, Sarosiek K et al (2016). Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 7: 11589. PubMed PMC
Butler MT, Wallingford JB (2017). Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 18: 375–388. PubMed PMC
Calissano C, Damle RN, Marsilio S, Yan XJ, Yancopoulos S, Hayes G et al (2011). Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med 17: 1374–1382. PubMed PMC
Clevers H (2006). Wnt/beta‐catenin signaling in development and disease. Cell 127: 469–480. PubMed
Clevers H, Nusse R (2012). Wnt/beta‐catenin signaling and disease. Cell 149: 1192–1205. PubMed
Cruciat CM, Niehrs C (2013). Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5: a015081. PubMed PMC
Cubedo E, Gentles AJ, Huang C, Natkunam Y, Bhatt S, Lu X et al (2012). Identification of LMO2 transcriptome and interactome in diffuse large B‐cell lymphoma. Blood 119: 5478–5491. PubMed PMC
Cui B, Ghia EM, Chen L, Rassenti LZ, DeBoever C, Widhopf GF 2nd et al (2016). High‐level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood 128: 2931–2940. PubMed PMC
Daneshmanesh AH, Hojjat‐Farsangi M, Khan AS, Jeddi‐Tehrani M, Akhondi MM, Bayat AA et al (2012). Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia 26: 1348–1355. PubMed
Daneshmanesh AH, Hojjat‐Farsangi M, Moshfegh A, Khan AS, Mikaelsson E, Osterborg A et al (2015). The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies. Br J Haematol 169: 455–458. PubMed
Daneshmanesh AH, Mikaelsson E, Jeddi‐Tehrani M, Bayat AA, Ghods R, Ostadkarampour M et al (2008). Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer 123: 1190–1195. PubMed
Daneshmanesh AH, Porwit A, Hojjat‐Farsangi M, Jeddi‐Tehrani M, Tamm KP, Grander D et al (2013). Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk Lymphoma 54: 843–850. PubMed
Delgado J, Doubek M, Baumann T, Kotaskova J, Molica S, Mozas P et al (2017). Chronic lymphocytic leukemia: a prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL‐IPI. Am J Hematol 92: 375–380. PubMed
Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S et al (2017). Silencing c‐Myc translation as a therapeutic strategy through targeting PI3Kdelta and CK1epsilon in hematological malignancies. Blood 129: 88–99. PubMed PMC
Ding W, Nowakowski GS, Knox TR, Boysen JC, Maas ML, Schwager SM et al (2009). Bi‐directional activation between mesenchymal stem cells and CLL B‐cells: implication for CLL disease progression. Br J Haematol 147: 471–483. PubMed PMC
Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA (2010). High lymphoid enhancer‐binding factor‐1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep 2 e3. PubMed PMC
Esteve P, Sandonis A, Ibanez C, Shimono A, Guerrero I, Bovolenta P (2011). Secreted frizzled‐related proteins are required for Wnt/beta‐catenin signalling activation in the vertebrate optic cup. Development 138: 4179–4184. PubMed
Fernandez NB, Lorenzo D, Picco ME, Barbero G, Dergan‐Dylon LS, Marks MP et al (2016). ROR1 contributes to melanoma cell growth and migration by regulating N‐cadherin expression via the PI3K/Akt pathway. Mol Carcinog 55: 1772–1785. PubMed
Frick M, Dorken B, Lenz G (2012). New insights into the biology of molecular subtypes of diffuse large B‐cell lymphoma and Burkitt lymphoma. Best Pract Res Clin Haematol 25: 3–12. PubMed
Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE et al (2008). Antisera induced by infusions of autologous Ad‐CD154‐leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A 105: 3047–3052. PubMed PMC
Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlosser A et al (2010). Small molecule inhibitors of Wnt/beta‐catenin/lef‐1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 12: 326–335. PubMed PMC
Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA et al (2011). Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 20: 163–176. PubMed PMC
Gao C, Chen YG (2010). Dishevelled: the hub of Wnt signaling. Cell Signal 22: 717–727. PubMed
Gelebart P, Anand M, Armanious H, Peters AC, Dien Bard J, Amin HM et al (2008). Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood 112: 5171–5179. PubMed PMC
Ghamlouch H, Darwiche W, Hodroge A, Ouled‐Haddou H, Dupont S, Singh AR et al (2015). Factors involved in CLL pathogenesis and cell survival are disrupted by differentiation of CLL B‐cells into antibody‐secreting cells. Oncotarget 6: 18484–18503. PubMed PMC
Golan T, Yaniv A, Bafico A, Liu G, Gazit A (2004). The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta‐catenin signaling cascade. J Biol Chem 279: 14879–14888. PubMed
Gutierrez A Jr, Arendt BK, Tschumper RC, Kay NE, Zent CS, Jelinek DF (2011). Differentiation of chronic lymphocytic leukemia B cells into immunoglobulin secreting cells decreases LEF‐1 expression. PLoS One 6 e26056. PubMed PMC
Gutierrez A Jr, Tschumper RC, Wu X, Shanafelt TD, Eckel‐Passow J, Huddleston PM 3rd et al (2010). LEF‐1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B‐cell lymphocytosis. Blood 116: 2975–2983. PubMed PMC
Hallek M (2015). Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol 90: 446–460. PubMed
Hammerlein A, Weiske J, Huber O (2005). A second protein kinase CK1‐mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor‐1/beta‐catenin complex. Cell Mol Life Sci 62: 606–618. PubMed PMC
Hofbauer SW, Krenn PW, Ganghammer S, Asslaber D, Pichler U, Oberascher K et al (2014). Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells. Blood 123: 2181–2188. PubMed
Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996). Nuclear localization of beta‐catenin by interaction with transcription factor LEF‐1. Mech Dev 59: 3–10. PubMed
Hudecek M, Lupo‐Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C et al (2013). Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1‐specific chimeric antigen receptor T cells. Clin Cancer Res 19: 3153–3164. PubMed PMC
Hudecek M, Schmitt TM, Baskar S, Lupo‐Stanghellini MT, Nishida T, Yamamoto TN et al (2010). The B‐cell tumor‐associated antigen ROR1 can be targeted with T cells modified to express a ROR1‐specific chimeric antigen receptor. Blood 116: 4532–4541. PubMed PMC
Cheong JK, Virshup DM (2016). CK1delta: a pharmacologically tractable Achilles' heel of Wnt‐driven cancers? Ann Transl Med 4: 433. PubMed PMC
Choi MY, Widhopf GF 2nd, Wu CC, Cui B, Lao F, Sadarangani A et al (2015). Pre‐clinical specificity and safety of UC‐961, a first‐in‐class monoclonal antibody targeting ROR1. Clin Lymphoma Myeloma Leuk 15 (Suppl): S167–S169. PubMed PMC
Jain P, Thompson PA, Keating M, Estrov Z, Ferrajoli A, Jain N et al (2017). Long‐term outcomes for patients with chronic lymphocytic leukemia who discontinue ibrutinib. Cancer 7: 11589. PubMed PMC
Jamroziak K, Pula B, Walewski J (2017). Current treatment of chronic lymphocytic leukemia. Curr Treat Options Oncol 18: 5. PubMed
Janovska P, Poppova L, Plevova K, Plesingerova H, Behal M, Kaucka M et al (2016). Autocrine signaling by Wnt‐5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin Cancer Res 22: 459–469. PubMed PMC
Jin W, Reiley WR, Lee AJ, Wright A, Wu X, Zhang M et al (2007). Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J Biol Chem 282: 15884–15893. PubMed
Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N (1996). The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev 10: 3116–3128. PubMed
Kagey MH, He X (2017). Rationale for targeting the Wnt signaling modulator Dickkopf‐1 for oncology. Br J Pharmacol 2: 13894. PubMed PMC
Kaucka M, Petersen J, Janovska P, Radaszkiewicz T, Smyckova L, Daulat AM et al (2015). Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian Wnt/planar cell polarity pathway. Cell communication and signaling : CCS 13: 2. PubMed PMC
Kaucka M, Plevova K, Pavlova S, Janovska P, Mishra A, Verner J et al (2013). The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B‐lymphocyte migration. Cancer Res 73: 1491–1501. PubMed
Kestler HA, Kühl M (2008). From individual Wnt pathways towards a Wnt signalling network. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1333–1347. PubMed PMC
Khan AS, Hojjat‐Farsangi M, Daneshmanesh AH, Hansson L, Kokhaei P, Osterborg A et al (2016). Dishevelled proteins are significantly upregulated in chronic lymphocytic leukaemia. Tumour Biol 37: 11947–11957. PubMed
Kotaskova J, Pavlova S, Greif I, Stehlikova O, Plevova K, Janovska P et al (2016). ROR1‐based immunomagnetic protocol allows efficient separation of CLL and healthy B cells. Br J Haematol 175: 339–342. PubMed
Kotaskova J, Tichy B, Trbusek M, Francova HS, Kabathova J, Malcikova J et al (2010). High expression of lymphocyte‐activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment‐free survival. J Mol Diagn 12: 328–334. PubMed PMC
Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G et al (2012). Epigenomic analysis detects widespread gene‐body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 44: 1236–1242. PubMed
Kuppers R, Engert A, Hansmann ML (2012). Hodgkin lymphoma. J Clin Invest 122: 3439–3447. PubMed PMC
Laranjeira AB, Yang SX (2016). Therapeutic target discovery and drug development in cancer stem cells for leukemia and lymphoma: from bench to the clinic. Expert Opin Drug Discov 11: 1071–1080. PubMed
Lazarian G, Guieze R, Wu CJ (2017). Clinical implications of novel genomic discoveries in chronic lymphocytic leukemia. J Clin Oncol 35: 984–993. PubMed PMC
Lee H‐J, Shi D‐L, Zheng JJ (2015). Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways. Elife 4 e08142. PubMed PMC
Lento W, Congdon K, Voermans C, Kritzik M, Reya T (2013). Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harb Perspect Biol 5 pii: a008011. PubMed PMC
Linke F, Harenberg M, Nietert MM, Zaunig S, von Bonin F, Arlt A et al (2017a). Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical Wnt pathway in Hodgkin lymphoma. Leukemia 31: 361–372. PubMed
Linke F, Zaunig S, Nietert MM, von Bonin F, Lutz S, Dullin C et al (2017b). Wnt5A: a motility‐promoting factor in Hodgkin lymphoma. Oncogene 36: 13–23. PubMed
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T et al (2013). Targeting Wnt‐driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A 110: 20224–20229. PubMed PMC
Liu P, Xu B, Shen W, Zhu H, Wu W, Fu Y et al (2012). Dysregulation of TNFalpha‐induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 26: 1293–1300. PubMed
Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al (2004). Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 101: 3118–3123. PubMed PMC
Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ (2012). Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26: 414–421. PubMed PMC
MacDonald BT, Tamai K, He X (2009). Wnt/beta‐catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26. PubMed PMC
Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J et al (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35: 2197–2207. PubMed PMC
Mahadevan D, Choi J, Cooke L, Simons B, Riley C, Klinkhammer T et al (2009). Gene expression and serum cytokine profiling of low stage CLL identify Wnt/PCP, Flt‐3L/Flt‐3 and CXCL9/CXCR3 as regulators of cell proliferation, survival and migration. Hum Genomics Proteomics 2009: 453634. PubMed PMC
Malhotra S, Kincade PW (2009). Wnt‐related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 4: 27–36. PubMed PMC
Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T (2015). CYLD‐mediated signaling and diseases. Curr Drug Targets 16: 284–294. PubMed PMC
Mauro FR, Galieni P, Tedeschi A, Laurenti L, Del Poeta G, Reda G et al (2017). Factors predicting survival in chronic lymphocytic leukemia patients developing Richter syndrome transformation into Hodgkin lymphoma. Am J Hematol 92: 529–535. PubMed
Memarian A, Hojjat‐Farsangi M, Asgarian‐Omran H, Younesi V, Jeddi‐Tehrani M, Sharifian RA et al (2009). Variation in Wnt genes expression in different subtypes of chronic lymphocytic leukemia. Leuk Lymphoma 50: 2061–2070. PubMed
Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE et al (2010). Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A 107: 15240–15245. PubMed PMC
Mii Y, Taira M (2009). Secreted Frizzled‐related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136: 4083–4088. PubMed
Mittal AK, Chaturvedi NK, Rai KJ, Gilling‐Cutucache CE, Nordgren TM, Moragues M et al (2014). Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease. Mol Med 20: 290–301. PubMed PMC
Morrison JA, Gulley ML, Pathmanathan R, Raab‐Traub N (2004). Differential signaling pathways are activated in the Epstein‐Barr virus‐associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 64: 5251–5260. PubMed
Moskalev EA, Luckert K, Vorobjev IA, Mastitsky SE, Gladkikh AA, Stephan A et al (2012). Concurrent epigenetic silencing of wnt/beta‐catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer 12: 213. PubMed PMC
O'Malley DP, Lee JP, Bellizzi AM (2017). Expression of LEF1 in mantle cell lymphoma. Ann Diagn Pathol 26: 57–59. PubMed
Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS et al (2016). DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 48: 253–264. PubMed PMC
Ott G, Rosenwald A (2008). Molecular pathogenesis of follicular lymphoma. Haematologica 93: 1773–1776. PubMed
Parameswaran N, Matsui K, Gupta N (2011). Conformational switching in ezrin regulates morphological and cytoskeletal changes required for B cell chemotaxis. J Immunol 186: 4088–4097. PubMed PMC
Pei L, Choi JH, Liu J, Lee EJ, McCarthy B, Wilson JM et al (2012). Genome‐wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia. Epigenetics 7: 567–578. PubMed PMC
Peiffer L, Poll‐Wolbeck SJ, Flamme H, Gehrke I, Hallek M, Kreuzer KA (2014). Trichostatin A effectively induces apoptosis in chronic lymphocytic leukemia cells via inhibition of Wnt signaling and histone deacetylation. J Cancer Res Clin Oncol 140: 1283–1293. PubMed
Perez‐Galan P, Dreyling M, Wiestner A (2011). Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117: 26–38. PubMed PMC
Poppova L, Janovska P, Plevova K, Radova L, Plesingerova H, Borsky M et al (2016). Decreased Wnt3 expression in chronic lymphocytic leukaemia is a hallmark of disease progression and identifies patients with worse prognosis in the subgroup with mutated IGHV. Br J Haematol 175: 851–859. PubMed
Proffitt KD, Madan B, Ke Z, Pendharkar V, Ding L, Lee MA et al (2013). Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of Wnt‐driven mammary cancer. Cancer Res 73: 502–507. PubMed
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ et al (2017). Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/beta‐catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem 292: 5898–5908. PubMed PMC
Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R et al (2000). Wnt signaling regulates B lymphocyte proliferation through a LEF‐1 dependent mechanism. Immunity 13: 15–24. PubMed
Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al (2001). Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194: 1639–1647. PubMed PMC
Rossi D, Gaidano G (2016). Richter syndrome: pathogenesis and management. Semin Oncol 43: 311–319. PubMed
Sanchez‐Aguilera A, Rattmann I, Drew DZ, Muller LU, Summey V, Lucas DM et al (2010). Involvement of RhoH GTPase in the development of B‐cell chronic lymphocytic leukemia. Leukemia 24: 97–104. PubMed PMC
Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O et al (2010). Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 116: 3724–3734. PubMed
Schlessinger K, Hall A, Tolwinski N (2009). Wnt signaling pathways meet Rho GTPases. Genes Dev 23: 265–277. PubMed
Seeliger B, Wilop S, Osieka R, Galm O, Jost E (2009). CpG island methylation patterns in chronic lymphocytic leukemia. Leuk Lymphoma 50: 419–426. PubMed
Seifert JR, Mlodzik M (2007). Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8: 126–138. PubMed
Semenov MV, Habas R, Macdonald BT, He X (2007). SnapShot: noncanonical Wnt signaling pathways. Cell 131: 1378. PubMed
Sohlbach K, Moll R, Gossmann J, Nowak O, Barth P, Neubauer A et al (2012). β‐Catenin signaling: no relevance in Hodgkin lymphoma? Leuk Lymphoma 53: 996–998. PubMed
Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH et al (2016). The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucl Acids Res 44 (D1): D1054–D1068. PubMed PMC
Staal FJ, Famili F, Garcia Perez L, Pike‐Overzet K (2016a). Aberrant Wnt signaling in leukemia. Cancers (Basel) 8: 78. PubMed PMC
Staal FJ, Chhatta A, Mikkers H (2016b). Caught in a Wnt storm: complexities of Wnt signaling in hematopoiesis. Exp Hematol 44: 451–457. PubMed
Staal FJ, Luis TC, Tiemessen MM (2008). Wnt signalling in the immune system: Wnt is spreading its wings. Nat Rev Immunol 8: 581–593. PubMed
Troeger A, Johnson AJ, Wood J, Blum WG, Andritsos LA, Byrd JC et al (2012). RhoH is critical for cell‐microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 119: 4708–4718. PubMed PMC
van Amerongen R (2012). Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol 4 pii: a007914. PubMed PMC
Vogt N, Dai B, Erdmann T, Berdel WE, Lenz G (2017). The molecular pathogenesis of mantle cell lymphoma. Leuk Lymphoma 58: 1530–1537. PubMed
Walther N, Ulrich A, Vockerodt M, von Bonin F, Klapper W, Meyer K et al (2013). Aberrant lymphocyte enhancer‐binding factor 1 expression is characteristic for sporadic Burkitt's lymphoma. Am J Pathol 182: 1092–1098. PubMed
Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S et al (2016). Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30: 750–763. PubMed PMC
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al (2011). SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365: 2497–2506. PubMed PMC
Wang L, Shalek AK, Lawrence M, Ding R, Gaublomme JT, Pochet N et al (2014). Somatic mutation as a mechanism of Wnt/beta‐catenin pathway activation in CLL. Blood 124: 1089–1098. PubMed PMC
Wang Y, Chang H, Nathans J (2010). When whorls collide: the development of hair patterns in frizzled 6 mutant mice. Development 137: 4091–4099. PubMed PMC
Widhopf GF 2nd, Cui B, Ghia EM, Chen L, Messer K, Shen Z et al (2014). ROR1 can interact with TCL1 and enhance leukemogenesis in Emu‐TCL1 transgenic mice. Proc Natl Acad Sci U S A 111: 793–798. PubMed PMC
Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al (2003). Wnt proteins are lipid‐modified and can act as stem cell growth factors. Nature 423: 448–452. PubMed
Wu QL, Zierold C, Ranheim EA (2009). Dysregulation of Frizzled 6 is a critical component of B‐cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood 113: 3031–3039. PubMed PMC
Wu W, Zhu H, Fu Y, Shen W, Miao K, Hong M et al (2016). High LEF1 expression predicts adverse prognosis in chronic lymphocytic leukemia and may be targeted by ethacrynic acid. Oncotarget 7: 21631–21643. PubMed PMC
Wu W, Zhu H, Fu Y, Shen W, Xu J, Miao K et al (2014). Clinical significance of down‐regulated cylindromatosis gene in chronic lymphocytic leukemia. Leuk Lymphoma 55: 588–594. PubMed
Yang J, Baskar S, Kwong KY, Kennedy MG, Wiestner A, Rader C (2011). Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B‐cell malignancies. PLoS One 6 e21018. PubMed PMC
Yu J, Chen L, Cui B, Widhopf GF 2nd, Shen Z, Wu R et al (2016). Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest 126: 585–598. PubMed PMC
Yu J, Chen L, Cui B, Wu C, Choi MY, Chen Y et al (2017). Cirmtuzumab inhibits Wnt5a‐induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib. Leukemia 31: 1333–1339. PubMed PMC
Yuseff MI, Lennon‐Dumenil AM (2015). B cells use conserved polarity cues to regulate their antigen processing and presentation functions. Front Immunol 6: 251. PubMed PMC
Zhang S, Chen L, Cui B, Chuang HY, Yu J, Wang‐Rodriguez J et al (2012). ROR1 is expressed in human breast cancer and associated with enhanced tumor‐cell growth. PLoS One 7 (3) e31127. PubMed PMC
Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2
Targeting Casein Kinase 1 (CK1) in Hematological Cancers
WNT signalling: mechanisms and therapeutic opportunities